Suppr超能文献

证据表明,大肠杆菌 supE44 突变是 glnX 的琥珀色抑制等位基因,它还能抑制 ochre 和 opal 无义突变。

Evidence that the supE44 mutation of Escherichia coli is an amber suppressor allele of glnX and that it also suppresses ochre and opal nonsense mutations.

机构信息

Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.

出版信息

J Bacteriol. 2010 Nov;192(22):6039-44. doi: 10.1128/JB.00474-10. Epub 2010 Sep 10.

Abstract

Translational readthrough of nonsense codons is seen not only in organisms possessing one or more tRNA suppressors but also in strains lacking suppressors. Amber suppressor tRNAs have been reported to suppress only amber nonsense mutations, unlike ochre suppressors, which can suppress both amber and ochre mutations, essentially due to wobble base pairing. In an Escherichia coli strain carrying the lacZU118 episome (an ochre mutation in the lacZ gene) and harboring the supE44 allele, suppression of the ochre mutation was observed after 7 days of incubation. The presence of the supE44 lesion in the relevant strains was confirmed by sequencing, and it was found to be in the duplicate copy of the glnV tRNA gene, glnX. To investigate this further, an in vivo luciferase assay developed by D. W. Schultz and M. Yarus (J. Bacteriol. 172:595-602, 1990) was employed to evaluate the efficiency of suppression of amber (UAG), ochre (UAA), and opal (UGA) mutations by supE44. We have shown here that supE44 suppresses ochre as well as opal nonsense mutations, with comparable efficiencies. The readthrough of nonsense mutations in a wild-type E. coli strain was much lower than that in a supE44 strain when measured by the luciferase assay. Increased suppression of nonsense mutations, especially ochre and opal, by supE44 was found to be growth phase dependent, as this phenomenon was only observed in stationary phase and not in logarithmic phase. These results have implications for the decoding accuracy of the translational machinery, particularly in stationary growth phase.

摘要

翻译通读非终止密码子不仅见于具有一个或多个 tRNA 抑制物的生物体中,也见于缺乏抑制物的菌株中。已报道琥珀色抑制 tRNA 仅能抑制琥珀色无义突变,而不同于赭石抑制物,后者可同时抑制琥珀色和赭石突变,这主要是由于摆动碱基配对。在携带 lacZU118 附加体(lacZ 基因中的赭石突变)并携带 supE44 等位基因的大肠杆菌菌株中,在孵育 7 天后观察到赭石突变的抑制。通过测序证实了相关菌株中 supE44 损伤的存在,并且发现它位于 glnV tRNA 基因的重复拷贝 glnX 中。为了进一步研究这一点,采用了 D. W. Schultz 和 M. Yarus(J. Bacteriol. 172:595-602, 1990)开发的体内荧光素酶测定法来评估 supE44 对琥珀色(UAG)、赭石(UAA)和opal(UGA)突变的抑制效率。我们在这里表明,supE44 能够以可比的效率抑制赭石和 opal 无义突变。通过荧光素酶测定法测量,野生型大肠杆菌菌株中的无义突变通读率明显低于 supE44 菌株。supE44 对无义突变的抑制作用,尤其是对赭石和 opal 突变的抑制作用,被发现与生长阶段有关,因为这种现象仅在停滞期观察到,而在对数期则没有观察到。这些结果对翻译机制的解码准确性具有重要意义,尤其是在停滞生长阶段。

相似文献

3
Nonsense suppression in archaea.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6015-20. doi: 10.1073/pnas.1501558112. Epub 2015 Apr 27.
5
Glutamine is incorporated at the nonsense codons UAG and UAA in a suppressor-free Escherichia coli strain.
Biochim Biophys Acta. 2003 May 13;1627(1):1-6. doi: 10.1016/s0167-4781(03)00050-2.
9
10
Yeast tRNATrp genes with anticodons corresponding to UAA and UGA nonsense codons.
Nucleic Acids Res. 1990 Jul 25;18(14):4215-21. doi: 10.1093/nar/18.14.4215.

引用本文的文献

3
System-wide optimization of an orthogonal translation system with enhanced biological tolerance.
Mol Syst Biol. 2023 Aug 8;19(8):e10591. doi: 10.15252/msb.202110591. Epub 2023 Jul 21.
4
CRISPR-based engineering of phages for in situ bacterial base editing.
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2206744119. doi: 10.1073/pnas.2206744119. Epub 2022 Nov 7.
7
A short translational ramp determines the efficiency of protein synthesis.
Nat Commun. 2019 Dec 18;10(1):5774. doi: 10.1038/s41467-019-13810-1.
8
Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3.
PLoS One. 2019 Jun 17;14(6):e0213394. doi: 10.1371/journal.pone.0213394. eCollection 2019.
9
Genetic selection for mistranslation rescues a defective co-chaperone in yeast.
Nucleic Acids Res. 2017 Apr 7;45(6):3407-3421. doi: 10.1093/nar/gkw1021.
10
A simple technique for suppressor detection in Escherichia coli.
FEMS Microbiol Lett. 2016 Oct 1;363(19). doi: 10.1093/femsle/fnw228.

本文引用的文献

1
The genetic code - thawing the 'frozen accident'.
J Biosci. 2006 Oct;31(4):459-63. doi: 10.1007/BF02705185.
2
Natural expansion of the genetic code.
Nat Chem Biol. 2007 Jan;3(1):29-35. doi: 10.1038/nchembio847.
3
The frequency of translational misreading errors in E. coli is largely determined by tRNA competition.
RNA. 2007 Jan;13(1):87-96. doi: 10.1261/rna.294907. Epub 2006 Nov 9.
5
Decoding the genome: a modified view.
Nucleic Acids Res. 2004 Jan 9;32(1):223-38. doi: 10.1093/nar/gkh185. Print 2004.
6
Glutamine is incorporated at the nonsense codons UAG and UAA in a suppressor-free Escherichia coli strain.
Biochim Biophys Acta. 2003 May 13;1627(1):1-6. doi: 10.1016/s0167-4781(03)00050-2.
8
SOS and Mayday: multiple inducible mutagenic pathways in Escherichia coli.
Mol Microbiol. 1998 Dec;30(5):905-10. doi: 10.1046/j.1365-2958.1998.01120.x.
9
Linkage map of Escherichia coli K-12, edition 10: the traditional map.
Microbiol Mol Biol Rev. 1998 Sep;62(3):814-984. doi: 10.1128/MMBR.62.3.814-984.1998.
10
Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli.
FEBS Lett. 1998 Jan 16;421(3):237-42. doi: 10.1016/s0014-5793(97)01570-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验