Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island 02903, USA.
Am J Physiol Heart Circ Physiol. 2010 Nov;299(5):H1525-34. doi: 10.1152/ajpheart.00479.2009. Epub 2010 Sep 10.
We previously reported a transgenic rabbit model of long QT syndrome based on overexpression of pore mutants of repolarizing K(+) channels KvLQT1 (LQT1) and HERG (LQT2).The transgenes in these rabbits eliminated the slow and fast components of the delayed rectifier K(+) current (I(Ks) and I(Kr), respectively), as expected. Interestingly, the expressed pore mutants of HERG and KvLQT1 downregulated the remaining reciprocal repolarizing currents, I(Ks) and I(Kr), without affecting the steady-state levels of the native polypeptides. Here, we sought to further explore the functional interactions between HERG and KvLQT1 in heterologous expression systems. Stable Chinese hamster ovary (CHO) cell lines expressing KvLQT1-minK or HERG were transiently transfected with expression vectors coding for mutant or wild-type HERG or KvLQT1. Transiently expressed pore mutant or wild-type KvLQT1 downregulated I(Kr) in HERG stable CHO cell lines by 70% and 44%, respectively. Immunostaining revealed a severalfold lower surface expression of HERG, which could account for the reduction in I(Kr) upon KvLQT1 expression. Deletion of the KvLQT1 NH(2)-terminus did not abolish the downregulation, suggesting that the interactions between the two channels are mediated through their COOH-termini. Similarly, transiently expressed HERG reduced I(Ks) in KvLQT1-minK stable cells. Coimmunoprecipitations indicated a direct interaction between HERG and KvLQT1, and surface plasmon resonance analysis demonstrated a specific, physical association between the COOH-termini of KvLQT1 and HERG. Here, we present an in vitro model system consistent with the in vivo reciprocal downregulation of repolarizing currents seen in transgenic rabbit models, illustrating the importance of the transfection method when studying heterologous ion channel expression and trafficking. Moreover, our data suggest that interactions between KvLQT1 and HERG are mediated through COOH-termini.
我们之前报道了一种长 QT 综合征的转基因兔模型,该模型基于超表达复极化 K(+)通道的孔突变体 KvLQT1(LQT1)和 HERG(LQT2)。这些兔子中的转基因体消除了延迟整流钾电流的缓慢和快速成分(分别为 I(Ks) 和 I(Kr)),这是预期的。有趣的是,HERG 和 KvLQT1 的表达孔突变体下调了剩余的相互复极化电流 I(Ks) 和 I(Kr),而不影响天然多肽的稳态水平。在这里,我们试图在异源表达系统中进一步探索 HERG 和 KvLQT1 之间的功能相互作用。表达 KvLQT1-minK 或 HERG 的稳定中国仓鼠卵巢(CHO)细胞系通过瞬时转染编码突变型或野生型 HERG 或 KvLQT1 的表达载体进行转染。瞬时表达的孔突变体或野生型 KvLQT1 分别使 HERG 稳定 CHO 细胞系中的 I(Kr) 下调了 70%和 44%。免疫染色显示 HERG 的表面表达降低了几倍,这可以解释 KvLQT1 表达时 I(Kr) 的减少。KvLQT1 NH(2)-末端缺失并没有消除下调作用,这表明两个通道之间的相互作用是通过它们的 COOH-末端介导的。同样,瞬时表达的 HERG 降低了 KvLQT1-minK 稳定细胞中的 I(Ks)。共免疫沉淀表明 HERG 和 KvLQT1 之间存在直接相互作用,表面等离子体共振分析表明 KvLQT1 和 HERG 的 COOH-末端之间存在特异性物理关联。在这里,我们提出了一个体外模型系统,与转基因兔模型中观察到的复极化电流的体内相互下调一致,说明了在研究异源离子通道表达和转运时转染方法的重要性。此外,我们的数据表明,KvLQT1 和 HERG 之间的相互作用是通过 COOH-末端介导的。