Wang Mengmeng, Ong Lee-Ling Sharon, Dauwels Justin, Asada H Harry
School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, Singapore.
Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
PLoS One. 2017 Nov 14;12(11):e0186465. doi: 10.1371/journal.pone.0186465. eCollection 2017.
Angiogenesis, the growth of new blood vessels from pre-existing vessels, is a critical step in cancer invasion. Better understanding of the angiogenic mechanisms is required to develop effective antiangiogenic therapies for cancer treatment. We culture angiogenic vessels in 3D microfluidic devices under different Sphingosin-1-phosphate (S1P) conditions and develop an automated vessel formation tracking system (AVFTS) to track the angiogenic vessel formation and extract quantitative vessel information from the experimental time-lapse phase contrast images. The proposed AVFTS first preprocesses the experimental images, then applies a distance transform and an augmented fast marching method in skeletonization, and finally implements the Hungarian method in branch tracking. When applying the AVFTS to our experimental data, we achieve 97.3% precision and 93.9% recall by comparing with the ground truth obtained from manual tracking by visual inspection. This system enables biologists to quantitatively compare the influence of different growth factors. Specifically, we conclude that the positive S1P gradient increases cell migration and vessel elongation, leading to a higher probability for branching to occur. The AVFTS is also applicable to distinguish tip and stalk cells by considering the relative cell locations in a branch. Moreover, we generate a novel type of cell lineage plot, which not only provides cell migration and proliferation histories but also demonstrates cell phenotypic changes and branch information.
血管生成是指从已有的血管中生长出新的血管,它是癌症侵袭过程中的关键步骤。为了开发有效的抗血管生成疗法用于癌症治疗,需要更好地理解血管生成机制。我们在不同的鞘氨醇-1-磷酸(S1P)条件下,在三维微流控装置中培养血管生成血管,并开发了一种自动血管生成跟踪系统(AVFTS),用于跟踪血管生成血管的形成,并从实验性延时相差图像中提取定量的血管信息。所提出的AVFTS首先对实验图像进行预处理,然后在骨架化过程中应用距离变换和增强快速行进法,最后在分支跟踪中实现匈牙利算法。当将AVFTS应用于我们的实验数据时,通过与目视检查手动跟踪得到的真实情况进行比较,我们实现了97.3%的精度和93.9%的召回率。该系统使生物学家能够定量比较不同生长因子的影响。具体而言,我们得出结论,正向S1P梯度会增加细胞迁移和血管伸长,导致分支发生的概率更高。AVFTS还可通过考虑分支中细胞的相对位置来区分顶端细胞和柄细胞。此外,我们生成了一种新型的细胞谱系图,它不仅提供细胞迁移和增殖历史,还展示细胞表型变化和分支信息。