Suppr超能文献

Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices.

作者信息

Wang Mengmeng, Ong Lee-Ling Sharon, Dauwels Justin, Asada H Harry

机构信息

School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, Singapore.

Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.

出版信息

PLoS One. 2017 Nov 14;12(11):e0186465. doi: 10.1371/journal.pone.0186465. eCollection 2017.

Abstract

Angiogenesis, the growth of new blood vessels from pre-existing vessels, is a critical step in cancer invasion. Better understanding of the angiogenic mechanisms is required to develop effective antiangiogenic therapies for cancer treatment. We culture angiogenic vessels in 3D microfluidic devices under different Sphingosin-1-phosphate (S1P) conditions and develop an automated vessel formation tracking system (AVFTS) to track the angiogenic vessel formation and extract quantitative vessel information from the experimental time-lapse phase contrast images. The proposed AVFTS first preprocesses the experimental images, then applies a distance transform and an augmented fast marching method in skeletonization, and finally implements the Hungarian method in branch tracking. When applying the AVFTS to our experimental data, we achieve 97.3% precision and 93.9% recall by comparing with the ground truth obtained from manual tracking by visual inspection. This system enables biologists to quantitatively compare the influence of different growth factors. Specifically, we conclude that the positive S1P gradient increases cell migration and vessel elongation, leading to a higher probability for branching to occur. The AVFTS is also applicable to distinguish tip and stalk cells by considering the relative cell locations in a branch. Moreover, we generate a novel type of cell lineage plot, which not only provides cell migration and proliferation histories but also demonstrates cell phenotypic changes and branch information.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb9f/5685595/6f53e3840c27/pone.0186465.g001.jpg

相似文献

1
Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices.
PLoS One. 2017 Nov 14;12(11):e0186465. doi: 10.1371/journal.pone.0186465. eCollection 2017.
2
Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.
Angiogenesis. 2019 Feb;22(1):157-165. doi: 10.1007/s10456-018-9647-0. Epub 2018 Aug 31.
3
Sphingosine signalling regulates decidual NK cell angiogenic phenotype and trophoblast migration.
Hum Reprod. 2013 Nov;28(11):3026-37. doi: 10.1093/humrep/det339. Epub 2013 Sep 3.
4
Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6712-7. doi: 10.1073/pnas.1221526110. Epub 2013 Apr 8.
5
Utilizing sphingosine-1-phosphate to stimulate sprouting angiogenesis.
Methods Mol Biol. 2012;874:201-13. doi: 10.1007/978-1-61779-800-9_16.
6
Ensemble analysis of angiogenic growth in three-dimensional microfluidic cell cultures.
PLoS One. 2012;7(5):e37333. doi: 10.1371/journal.pone.0037333. Epub 2012 May 25.
8
Oxidized LDL-induced angiogenesis involves sphingosine 1-phosphate: prevention by anti-S1P antibody.
Br J Pharmacol. 2015 Jan;172(1):106-18. doi: 10.1111/bph.12897. Epub 2014 Nov 24.
10
The sphingosine-1-phosphate derivative NHOBTD inhibits angiogenesis both in vitro and in vivo.
Biochem Biophys Res Commun. 2011 Sep 23;413(2):189-93. doi: 10.1016/j.bbrc.2011.08.055. Epub 2011 Aug 24.

引用本文的文献

1
Vascularized organoid-on-a-chip: design, imaging, and analysis.
Angiogenesis. 2024 May;27(2):147-172. doi: 10.1007/s10456-024-09905-z. Epub 2024 Feb 26.
2
Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation.
Neural Regen Res. 2020 Aug;15(8):1437-1450. doi: 10.4103/1673-5374.274332.
3
Multicell migration tracking within angiogenic networks by deep learning-based segmentation and augmented Bayesian filtering.
J Med Imaging (Bellingham). 2018 Apr;5(2):024005. doi: 10.1117/1.JMI.5.2.024005. Epub 2018 Jun 13.

本文引用的文献

1
3
Collective cell migration: guidance principles and hierarchies.
Trends Cell Biol. 2015 Sep;25(9):556-66. doi: 10.1016/j.tcb.2015.06.003. Epub 2015 Jun 29.
4
Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution.
Med Biol Eng Comput. 2016 Mar;54(2-3):511-24. doi: 10.1007/s11517-015-1337-0. Epub 2015 Jun 25.
5
Graphical model for joint segmentation and tracking of multiple dividing cells.
Bioinformatics. 2015 Mar 15;31(6):948-56. doi: 10.1093/bioinformatics/btu764. Epub 2014 Nov 17.
6
Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data.
Nat Methods. 2014 Sep;11(9):951-8. doi: 10.1038/nmeth.3036. Epub 2014 Jul 20.
7
Angiogenesis in zebrafish.
Semin Cell Dev Biol. 2014 Jul;31:106-14. doi: 10.1016/j.semcdb.2014.04.037. Epub 2014 May 9.
10
From seeing to believing: labelling strategies for in vivo cell-tracking experiments.
Interface Focus. 2013 Jun 6;3(3):20130001. doi: 10.1098/rsfs.2013.0001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验