Suppr超能文献

模糊物体骨架化:理论、算法与应用。

Fuzzy Object Skeletonization: Theory, Algorithms, and Applications.

出版信息

IEEE Trans Vis Comput Graph. 2018 Aug;24(8):2298-2314. doi: 10.1109/TVCG.2017.2738023. Epub 2017 Aug 10.

Abstract

Skeletonization offers a compact representation of an object while preserving important topological and geometrical features. Literature on skeletonization of binary objects is quite mature. However, challenges involved with skeletonization of fuzzy objects are mostly unanswered. This paper presents a new theory and algorithm of skeletonization for fuzzy objects, evaluates its performance, and demonstrates its applications. A formulation of fuzzy grassfire propagation is introduced; its relationships with fuzzy distance functions, level sets, and geodesics are discussed; and several new theoretical results are presented in the continuous space. A notion of collision-impact of fire-fronts at skeletal points is introduced, and its role in filtering noisy skeletal points is demonstrated. A fuzzy object skeletonization algorithm is developed using new notions of surface- and curve-skeletal voxels, digital collision-impact, filtering of noisy skeletal voxels, and continuity of skeletal surfaces. A skeletal noise pruning algorithm is presented using branch-level significance. Accuracy and robustness of the new algorithm are examined on computer-generated phantoms and micro- and conventional CT imaging of trabecular bone specimens. An application of fuzzy object skeletonization to compute structure-width at a low image resolution is demonstrated, and its ability to predict bone strength is examined. Finally, the performance of the new fuzzy object skeletonization algorithm is compared with two binary object skeletonization methods.

摘要

骨架化提供了一种紧凑的物体表示形式,同时保留了重要的拓扑和几何特征。关于二进制物体骨架化的文献已经相当成熟。然而,模糊物体骨架化所涉及的挑战大多尚未得到解决。本文提出了一种新的模糊物体骨架化理论和算法,评估了其性能,并展示了其应用。引入了模糊草火传播的公式化表述;讨论了其与模糊距离函数、水平集和测地线的关系;并在连续空间中提出了几个新的理论结果。引入了骨架点处火前线碰撞冲击的概念,并证明了其在过滤噪声骨架点方面的作用。使用新的表面和曲线骨架体素、数字碰撞冲击、噪声骨架体素过滤以及骨架表面连续性的概念,开发了一种模糊物体骨架化算法。使用分支级重要性提出了一种骨架噪声修剪算法。在计算机生成的体模以及微结构和常规 CT 成像的小梁骨样本上,对新算法的准确性和鲁棒性进行了检验。演示了模糊物体骨架化在低图像分辨率下计算结构宽度的应用,并检验了其预测骨强度的能力。最后,将新的模糊物体骨架化算法的性能与两种二进制物体骨架化方法进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验