Suppr超能文献

从模型到预测:急诊科的多中心研究。

From model to forecasting: a multicenter study in emergency departments.

机构信息

Institut national de la santé et de la recherche médicale, Paris, France.

出版信息

Acad Emerg Med. 2010 Sep;17(9):970-8. doi: 10.1111/j.1553-2712.2010.00847.x.

Abstract

OBJECTIVES

This study investigated whether mathematical models using calendar variables could identify the determinants of emergency department (ED) census over time in geographically close EDs and assessed the performance of long-term forecasts.

METHODS

Daily visits in four EDs at academic hospitals in the Paris area were collected from 2004 to 2007. First, a general linear model (GLM) based on calendar variables was used to assess two consecutive periods of 2 years each to create and test the mathematical models. Second, 2007 ED attendance was forecasted, based on a training set of data from 2004 to 2006. These analyses were performed on data sets from each individual ED and in a virtual mega ED, grouping all of the visits. Models and forecast accuracy were evaluated by mean absolute percentage error (MAPE).

RESULTS

The authors recorded 299,743 and 322,510 ED visits for the two periods, 2004-2005 and 2006-2007, respectively. The models accounted for up to 50% of the variations with a MAPE less than 10%. Visit patterns according to weekdays and holidays were different from one hospital to another, without seasonality. Influential factors changed over time within one ED, reducing the accuracy of forecasts. Forecasts led to a MAPE of 5.3% for the four EDs together and from 8.1% to 17.0% for each hospital.

CONCLUSIONS

Unexpectedly, in geographically close EDs over short periods of time, calendar determinants of attendance were different. In our setting, models and forecasts are more valuable to predict the combined ED attendance of several hospitals. In similar settings where resources are shared between facilities, these mathematical models could be a valuable tool to anticipate staff needs and site allocation.

摘要

目的

本研究旨在探讨使用日历变量的数学模型是否可以识别地理位置相近的急诊部(ED)中随时间推移的 ED 人数的决定因素,并评估长期预测的性能。

方法

2004 年至 2007 年,收集了巴黎地区学术医院的四个 ED 的每日就诊量。首先,使用基于日历变量的广义线性模型(GLM),评估了两个连续的 2 年时间段,以创建和测试数学模型。其次,根据 2004 年至 2006 年的数据训练集,对 2007 年的 ED 就诊量进行了预测。这些分析是在每个单独的 ED 的数据集和一个虚拟的大型 ED 数据集上进行的,将所有就诊量进行了分组。使用平均绝对百分比误差(MAPE)评估模型和预测准确性。

结果

作者记录了 2004-2005 年和 2006-2007 年两个时间段的 299743 次和 322510 次 ED 就诊量。模型解释了多达 50%的变化,MAPE 小于 10%。根据工作日和节假日的就诊模式在医院之间有所不同,没有季节性。在一个 ED 内,随时间推移,影响因素发生变化,导致预测准确性降低。四个 ED 一起的预测 MAPE 为 5.3%,每个医院的预测 MAPE 为 8.1%至 17.0%。

结论

出乎意料的是,在地理位置相近的 ED 中,在短时间内,出勤率的日历决定因素是不同的。在我们的研究环境中,模型和预测更有助于预测几个医院的 ED 就诊总量。在资源在设施之间共享的类似环境中,这些数学模型可以成为预测人员需求和站点分配的有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验