Peng Junfeng, Chen Chuan, Zhou Mi, Xie Xiaohua, Zhou Yuqi, Luo Ching-Hsing
School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China.
Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
JMIR Med Inform. 2020 Mar 30;8(3):e13075. doi: 10.2196/13075.
The overcrowding of hospital outpatient and emergency departments (OEDs) due to chronic respiratory diseases in certain weather or under certain environmental pollution conditions results in the degradation in quality of medical care, and even limits its availability.
To help OED managers to schedule medical resource allocation during times of excessive health care demands after short-term fluctuations in air pollution and weather, we employed machine learning (ML) methods to predict the peak OED arrivals of patients with chronic respiratory diseases.
In this paper, we first identified 13,218 visits from patients with chronic respiratory diseases to OEDs in hospitals from January 1, 2016, to December 31, 2017. Then, we divided the data into three datasets: weather-based visits, air quality-based visits, and weather air quality-based visits. Finally, we developed ML methods to predict the peak event (peak demand days) of patients with chronic respiratory diseases (eg, asthma, respiratory infection, and chronic obstructive pulmonary disease) visiting OEDs on the three weather data and environmental pollution datasets in Guangzhou, China.
The adaptive boosting-based neural networks, tree bag, and random forest achieved the biggest receiver operating characteristic area under the curve, 0.698, 0.714, and 0.809, on the air quality dataset, the weather dataset, and weather air quality dataset, respectively. Overall, random forests reached the best classification prediction performance.
The proposed ML methods may act as a useful tool to adapt medical services in advance by predicting the peak of OED arrivals. Further, the developed ML methods are generic enough to cope with similar medical scenarios, provided that the data is available.
在某些天气条件或特定环境污染状况下,慢性呼吸道疾病导致医院门诊和急诊科(OEDs)过度拥挤,进而造成医疗服务质量下降,甚至限制了医疗服务的可及性。
为帮助OEDs管理人员在空气污染和天气出现短期波动后医疗需求过高时安排医疗资源分配,我们采用机器学习(ML)方法预测慢性呼吸道疾病患者前往OEDs的高峰就诊量。
在本文中,我们首先确定了2016年1月1日至2017年12月31日期间13218例慢性呼吸道疾病患者到医院OEDs就诊的记录。然后,我们将数据分为三个数据集:基于天气的就诊数据集、基于空气质量的就诊数据集以及基于天气和空气质量的就诊数据集。最后,我们开发了ML方法,以预测中国广州三个天气数据和环境污染数据集上慢性呼吸道疾病(如哮喘、呼吸道感染和慢性阻塞性肺疾病)患者前往OEDs就诊的高峰事件(高峰需求日)。
基于自适应增强的神经网络、树袋模型和随机森林模型在空气质量数据集、天气数据集和天气空气质量数据集上分别取得了最大的曲线下面积,分别为0.698、0.714和0.809。总体而言,随机森林模型达到了最佳的分类预测性能。
所提出的ML方法可作为一种有用的工具,通过预测OEDs就诊高峰提前调整医疗服务。此外,只要有可用数据,所开发的ML方法具有足够的通用性,能够应对类似的医疗场景。