Suppr超能文献

5'-3'-UTR 相互作用调节 p53 mRNA 翻译,并为 DNA 损伤后调节 p53 诱导提供了一个靶点。

5'-3'-UTR interactions regulate p53 mRNA translation and provide a target for modulating p53 induction after DNA damage.

机构信息

Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.

出版信息

Genes Dev. 2010 Oct 1;24(19):2146-56. doi: 10.1101/gad.1968910. Epub 2010 Sep 13.

Abstract

Optimal induction of p53 protein after DNA damage requires RPL26-mediated increases in p53 mRNA translation. We report here the existence of a dsRNA region containing complementary sequences of the 5'- and 3'-untranslated regions (UTRs) of human p53 mRNA that is critical for its translational regulation by RPL26. Mutating as few as 3 bases in either of the two complementary UTR sequences abrogates the ability of RPL26 to bind to p53 mRNA and stimulate p53 translation, while compensatory mutations restore this binding and regulation. Short, single-strand oligonucleotides that target this 5'-3'-UTR base-pairing region blunt the binding of RPL26 to p53 mRNA in cells and reduce p53 induction and p53-mediated cell death after several different types of DNA damage and cellular stress. The ability to reduce stress induction of p53 with oligonucleotides or other small molecules has numerous potential therapeutic uses.

摘要

最佳的 p53 蛋白诱导作用需要在 DNA 损伤后通过 RPL26 介导的 p53 mRNA 翻译增加来实现。我们在此报告了一个 dsRNA 区域的存在,该区域包含人 p53 mRNA 的 5'和 3'非翻译区 (UTR) 的互补序列,对于 RPL26 对其翻译的调控至关重要。在这两个互补 UTR 序列中的任何一个中突变仅仅 3 个碱基,就会消除 RPL26 与 p53 mRNA 结合并刺激 p53 翻译的能力,而补偿性突变则恢复了这种结合和调控。靶向该 5'-3'-UTR 碱基配对区域的短单链寡核苷酸在细胞中削弱了 RPL26 与 p53 mRNA 的结合,并减少了几种不同类型的 DNA 损伤和细胞应激后 p53 的诱导和 p53 介导的细胞死亡。使用寡核苷酸或其他小分子来降低 p53 的应激诱导能力具有许多潜在的治疗用途。

相似文献

1
5'-3'-UTR interactions regulate p53 mRNA translation and provide a target for modulating p53 induction after DNA damage.
Genes Dev. 2010 Oct 1;24(19):2146-56. doi: 10.1101/gad.1968910. Epub 2010 Sep 13.
2
Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA.
J Biol Chem. 2012 May 11;287(20):16467-76. doi: 10.1074/jbc.M112.349274. Epub 2012 Mar 20.
3
Building p53.
Genes Dev. 2010 Oct 15;24(20):2229-32. doi: 10.1101/gad.1988510.
5
A novel cytoprotective function for the DNA repair protein Ku in regulating p53 mRNA translation and function.
EMBO Rep. 2016 Apr;17(4):508-18. doi: 10.15252/embr.201541181. Epub 2016 Mar 10.
7
Regulation of tumor suppressor p53 at the RNA level.
J Mol Med (Berl). 2010 Jul;88(7):645-52. doi: 10.1007/s00109-010-0609-2. Epub 2010 Mar 21.
8
Effect of a natural mutation in the 5' untranslated region on the translational control of p53 mRNA.
Oncogene. 2013 Aug 29;32(35):4148-59. doi: 10.1038/onc.2012.422. Epub 2012 Oct 1.
9
Translational control of human p53 expression in yeast mediated by 5'-UTR-ORF structural interaction.
Nucleic Acids Res. 2001 Mar 1;29(5):1222-7. doi: 10.1093/nar/29.5.1222.

引用本文的文献

1
The Role of Translation-Associated Proteins in p53 Modulation: Mechanisms and Implications.
Int J Mol Sci. 2025 Aug 22;26(17):8164. doi: 10.3390/ijms26178164.
3
Crosstalk between BER and NHEJ in XRCC4-Deficient Cells Depending on hTERT Overexpression.
Int J Mol Sci. 2024 Sep 27;25(19):10405. doi: 10.3390/ijms251910405.
4
MDM2: current research status and prospects of tumor treatment.
Cancer Cell Int. 2024 May 13;24(1):170. doi: 10.1186/s12935-024-03356-8.
5
Causes, functions, and therapeutic possibilities of RNA secondary structure ensembles and alternative states.
Cell Chem Biol. 2024 Jan 18;31(1):17-35. doi: 10.1016/j.chembiol.2023.12.010. Epub 2024 Jan 9.
6
Effects of Combinations of Untranslated-Region Sequences on Translation of mRNA.
Biomolecules. 2023 Nov 20;13(11):1677. doi: 10.3390/biom13111677.
7
MDM2 Implications for Potential Molecular Pathogenic Therapies of Soft-Tissue Tumors.
J Clin Med. 2023 May 24;12(11):3638. doi: 10.3390/jcm12113638.
8
Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway.
Radiat Res. 2023 Apr 1;199(4):406-421. doi: 10.1667/RADE-22-00219.1.
10
Role of noncoding RNAs and untranslated regions in cancer: A review.
Medicine (Baltimore). 2022 Aug 19;101(33):e30045. doi: 10.1097/MD.0000000000030045.

本文引用的文献

1
TP53 mutations in human cancers: origins, consequences, and clinical use.
Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. doi: 10.1101/cshperspect.a001008.
2
The p53 orchestra: Mdm2 and Mdmx set the tone.
Trends Cell Biol. 2010 May;20(5):299-309. doi: 10.1016/j.tcb.2010.01.009. Epub 2010 Feb 19.
3
The first 30 years of p53: growing ever more complex.
Nat Rev Cancer. 2009 Oct;9(10):749-58. doi: 10.1038/nrc2723.
4
RNA secondary structure analysis using the Vienna RNA package.
Curr Protoc Bioinformatics. 2009 Jun;Chapter 12:12.2.1-12.2.16. doi: 10.1002/0471250953.bi1202s26.
5
Regulation of translation initiation in eukaryotes: mechanisms and biological targets.
Cell. 2009 Feb 20;136(4):731-45. doi: 10.1016/j.cell.2009.01.042.
6
Pifithrin-alpha protects against DNA damage-induced apoptosis downstream of mitochondria independent of p53.
Cell Death Differ. 2009 Jun;16(6):869-78. doi: 10.1038/cdd.2009.17. Epub 2009 Feb 20.
7
Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26.
Mol Cell. 2008 Oct 24;32(2):180-9. doi: 10.1016/j.molcel.2008.08.031.
8
Translation factors promote the formation of two states of the closed-loop mRNP.
Nature. 2008 Jun 26;453(7199):1276-80. doi: 10.1038/nature06974. Epub 2008 May 21.
9
The Vienna RNA websuite.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W70-4. doi: 10.1093/nar/gkn188. Epub 2008 Apr 19.
10
New modes of translational control in development, behavior, and disease.
Mol Cell. 2007 Dec 14;28(5):721-9. doi: 10.1016/j.molcel.2007.11.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验