Suppr超能文献

合成和挽救 NAD:从莱茵衣藻中得到的经验教训。

Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii.

机构信息

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America.

出版信息

PLoS Genet. 2010 Sep 9;6(9):e1001105. doi: 10.1371/journal.pgen.1001105.

Abstract

The essential coenzyme nicotinamide adenine dinucleotide (NAD+) plays important roles in metabolic reactions and cell regulation in all organisms. Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+. Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis), as in plants, or nicotinamide, as in mammals (salvage synthesis). The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO), quinolinate synthetase (QS), quinolate phosphoribosyltransferase (QPT), nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT), and NAD+ synthetase (NS). Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants. We rescued the mutant phenotype by the introduction of BAC DNA (nic2-1 and nic13-1) or plasmids with cloned genes (nic1-1 and nic15-1) into the mutants. NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT) constitute the nicotinamide-dependent salvage pathway. A mutation in NAMPT (npt1-1) has no obvious growth defect and is not nicotinamide-dependent. However, double mutant strains with the npt1-1 mutation and any of the nic mutations are inviable. When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+. A homolog of the human SIRT6-like gene, SRT2, is upregulated in the NS mutant, which shows a longer vegetative life span than wild-type cells. Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity.

摘要

辅酶烟酰胺腺嘌呤二核苷酸 (NAD+) 是所有生物中代谢反应和细胞调节的重要组成部分。细菌、真菌、植物和动物使用不同的途径来合成 NAD+。我们的分子和遗传数据表明,在单细胞绿藻衣藻中,NAD+ 是从天冬氨酸(从头合成)合成的,就像植物一样,或者是从烟酰胺(挽救合成)合成的,就像哺乳动物一样。从头合成途径需要五种不同的酶:L-天冬氨酸氧化酶(ASO)、喹啉酸合酶(QS)、喹啉酸磷酸核糖基转移酶(QPT)、烟酰胺/烟酰胺单核苷酸腺苷酰转移酶(NMNAT)和 NAD+合成酶(NS)。序列相似性搜索、基因分离和突变体基因测序表明,每种酶的突变都会导致先前分离的 nic 突变体中出现需要烟酰胺的突变表型。我们通过将 BAC DNA(nic2-1 和 nic13-1)或带有克隆基因的质粒(nic1-1 和 nic15-1)导入突变体中来挽救突变体表型。NMNAT 也存在于从头合成途径中,而烟酰胺磷酸核糖基转移酶(NAMPT)构成了依赖烟酰胺的挽救途径。NAMPT(npt1-1)的突变没有明显的生长缺陷,也不依赖烟酰胺。然而,npt1-1 突变与任何 nic 突变的双突变株系都是不可存活的。当从头合成途径失活时,挽救途径对衣藻合成 NAD+是必不可少的。人类 SIRT6 样基因 SRT2 的同源物在 NS 突变体中上调,该突变体比野生型细胞具有更长的营养生长期。我们的结果表明,衣藻是研究 NAD+代谢和细胞寿命的理想模型系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bada/2936527/41b37e17f85a/pgen.1001105.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验