Suppr超能文献

基于年龄分层泊松回归模型的癌症趋势分析贝叶斯方法。

Bayesian approach to cancer-trend analysis using age-stratified Poisson regression models.

机构信息

Department of Quantitative Methods and Information Systems, Indian Institute of Management, Bannerghatta Road, Bangalore 560076, India.

出版信息

Stat Med. 2011 Jan 30;30(2):127-39. doi: 10.1002/sim.4077. Epub 2010 Sep 14.

Abstract

Annual Percentage Change (APC) summarizes trends in age-adjusted cancer rates over short time-intervals. This measure implicitly assumes linearity of the log-rates over the intervals in question, which may not be valid, especially for relatively longer time-intervals. An alternative is the Average Annual Percentage Change (AAPC), which computes a weighted average of APC values over intervals where log-rates are piece-wise linear. In this article, we propose a Bayesian approach to calculating APC and AAPC values from age-adjusted cancer rate data. The procedure involves modeling the corresponding counts using age-specific Poisson regression models with a log-link function that contains unknown joinpoints. The slope-changes at the joinpoints are assumed to have a mixture distribution with point mass at zero and the joinpoints are assumed to be uniformly distributed subject to order-restrictions. Additionally, the age-specific intercept parameters are modeled nonparametrically using a Dirichlet process prior. The proposed method can be used to construct Bayesian credible intervals for AAPC using age-adjusted mortality rates. This provides a significant improvement over the currently available frequentist method, where variance calculations are done conditional on the joinpoint locations. Simulation studies are used to demonstrate the success of the method in capturing trend-changes. Finally, the proposed method is illustrated using data on prostate cancer incidence.

摘要

年度百分比变化 (APC) 总结了短时间内年龄调整后癌症发病率的趋势。这种方法隐含地假设对数发病率在所讨论的时间段内呈线性,这可能是无效的,尤其是对于相对较长的时间段。另一种方法是平均年度百分比变化 (AAPC),它通过对数发病率呈分段线性的时间段计算 APC 值的加权平均值。在本文中,我们提出了一种从年龄调整后癌症发病率数据计算 APC 和 AAPC 值的贝叶斯方法。该程序涉及使用具有对数链接函数的特定于年龄的泊松回归模型对相应的计数进行建模,该链接函数包含未知的连接点。连接点处的斜率变化被假设为具有混合分布,在零处具有质量点,并且连接点被假设为服从有序限制的均匀分布。此外,使用狄利克雷过程先验对特定于年龄的截距参数进行非参数建模。所提出的方法可用于使用年龄调整后的死亡率构建 AAPC 的贝叶斯可信区间。这与目前可用的频率方法相比有了显著的改进,其中方差计算是在连接点位置的条件下进行的。模拟研究用于证明该方法在捕捉趋势变化方面的成功。最后,使用前列腺癌发病率数据说明了所提出的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验