DTU Space-NationalSpace Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
IEEE Trans Image Process. 2011 Mar;20(3):612-24. doi: 10.1109/TIP.2010.2076296. Epub 2010 Sep 13.
This paper introduces kernel versions of maximum autocorrelation factor (MAF) analysis and minimum noise fraction (MNF) analysis. The kernel versions are based upon a dual formulation also termed Q-mode analysis in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version, the inner products of the original data are replaced by inner products between nonlinear mappings into higher dimensional feature space. Via kernel substitution also known as the kernel trick these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of this kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component analysis (PCA), kernel MAF, and kernel MNF analyses handle nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via the kernel function and then performing a linear analysis in that space. Three examples show the very successful application of kernel MAF/MNF analysis to: 1) change detection in DLR 3K camera data recorded 0.7 s apart over a busy motorway, 2) change detection in hyperspectral HyMap scanner data covering a small agricultural area, and 3) maize kernel inspection. In the cases shown, the kernel MAF/MNF transformation performs better than its linear counterpart as well as linear and kernel PCA. The leading kernel MAF/MNF variates seem to possess the ability to adapt to even abruptly varying multi and hypervariate backgrounds and focus on extreme observations.
本文介绍了核版本的最大自相关因子(MAF)分析和最小噪声分数(MNF)分析。核版本基于双公式,也称为 Q 模式分析,其中数据仅通过 Gram 矩阵中的内积进入分析。在核版本中,原始数据的内积被非线性映射到更高维特征空间的内积所取代。通过核替换,也称为核技巧,这些映射之间的内积被核函数替换,分析中所需的所有量都用这个核函数表示。这意味着我们不需要显式地知道非线性映射。核主成分分析(PCA)、核 MAF 和核 MNF 分析通过核函数将数据隐式地转换为高(甚至无限)维特征空间,然后在该空间中进行线性分析。三个示例展示了核 MAF/MNF 分析在以下方面的非常成功的应用:1)在记录繁忙高速公路上相隔 0.7 秒的 DLR 3K 相机数据中进行变化检测,2)在覆盖小农业区的高光谱 HyMap 扫描仪数据中进行变化检测,以及 3)玉米核检测。在所显示的情况下,核 MAF/MNF 变换的性能优于其线性对应物以及线性和核 PCA。主要的核 MAF/MNF 变量似乎具有适应甚至急剧变化的多变量和超变量背景并关注极端观测的能力。