Suppr超能文献

基于残差网络的高光谱 CASI 与机载 LiDAR 数据融合用于地物分类

Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.

机构信息

College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China.

College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China.

出版信息

Sensors (Basel). 2020 Jul 16;20(14):3961. doi: 10.3390/s20143961.

Abstract

Modern satellite and aerial imagery outcomes exhibit increasingly complex types of ground objects with continuous developments and changes in land resources. Single remote-sensing modality is not sufficient for the accurate and satisfactory extraction and classification of ground objects. Hyperspectral imaging has been widely used in the classification of ground objects because of its high resolution, multiple bands, and abundant spatial and spectral information. Moreover, the airborne light detection and ranging (LiDAR) point-cloud data contains unique high-precision three-dimensional (3D) spatial information, which can enrich ground object classifiers with height features that hyperspectral images do not have. Therefore, the fusion of hyperspectral image data with airborne LiDAR point-cloud data is an effective approach for ground object classification. In this paper, the effectiveness of such a fusion scheme is investigated and confirmed on an observation area in the middle parts of the Heihe River in China. By combining the characteristics of hyperspectral compact airborne spectrographic imager (CASI) data and airborne LiDAR data, we extracted a variety of features for data fusion and ground object classification. Firstly, we used the minimum noise fraction transform to reduce the dimensionality of hyperspectral CASI images. Then, spatio-spectral and textural features of these images were extracted based on the normalized vegetation index and the gray-level co-occurrence matrices. Further, canopy height features were extracted from airborne LiDAR data. Finally, a hierarchical fusion scheme was applied to the hyperspectral CASI and airborne LiDAR features, and the fused features were used to train a residual network for high-accuracy ground object classification. The experimental results showed that the overall classification accuracy was based on the proposed hierarchical-fusion multiscale dilated residual network (M-DRN), which reached an accuracy of 97.89%. This result was found to be 10.13% and 5.68% higher than those of the convolutional neural network (CNN) and the dilated residual network (DRN), respectively. Spatio-spectral and textural features of hyperspectral CASI images can complement the canopy height features of airborne LiDAR data. These complementary features can provide richer and more accurate information than individual features for ground object classification and can thus outperform features based on a single remote-sensing modality.

摘要

现代卫星和航空影像成果展示了越来越复杂的地面目标类型,土地资源也在不断发展和变化。单一的遥感模式不足以准确和满意地提取和分类地面目标。高光谱成像是一种广泛应用于地面目标分类的技术,因为它具有高分辨率、多波段和丰富的空间和光谱信息。此外,机载光探测和测距 (LiDAR) 点云数据包含独特的高精度三维 (3D) 空间信息,可以用高光谱图像所没有的高度特征丰富地面目标分类器。因此,高光谱图像数据与机载 LiDAR 点云数据的融合是地面目标分类的有效方法。本文在中国黑河中游的一个观测区研究和验证了这种融合方案的有效性。通过结合高光谱紧凑型机载光谱成像仪 (CASI) 数据和机载 LiDAR 数据的特点,我们提取了各种特征进行数据融合和地面目标分类。首先,我们使用最小噪声分数变换来降低高光谱 CASI 图像的维度。然后,基于归一化植被指数和灰度共生矩阵提取这些图像的光谱和纹理特征。进一步,从机载 LiDAR 数据中提取冠层高度特征。最后,应用分层融合方案对高光谱 CASI 和机载 LiDAR 特征进行融合,并使用融合特征训练残差网络进行高精度地面目标分类。实验结果表明,基于所提出的分层融合多尺度扩张残差网络 (M-DRN) 的总体分类精度达到了 97.89%。与卷积神经网络 (CNN) 和扩张残差网络 (DRN) 相比,分别提高了 10.13%和 5.68%。高光谱 CASI 图像的光谱和纹理特征可以补充机载 LiDAR 数据的冠层高度特征。这些互补特征为地面目标分类提供了比单一特征更丰富和更准确的信息,因此优于基于单一遥感模式的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e5c/7412085/9b55632a81f4/sensors-20-03961-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验