Australian Centre for Microscopy and Microanalysis and ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, New South Wales 2006, Australia.
Nat Commun. 2010 Sep 7;1:63. doi: 10.1038/ncomms1062.
Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.
在保持可成形性的同时提高金属合金的强度,对于实现新一代轻量化结构和技术是一个有趣的挑战。在本文中,我们通过工程设计使铝合金含有纳米结构层次,并具有机械性能,这些性能扩展了已知的性能边界——一种航空级 7075 合金的屈服强度和均匀伸长率分别接近 1 GPa 和 5%。使用新颖的高分辨率显微镜技术观察到纳米结构建筑,它由无沉淀的固溶体组成,具有(i)高密度位错,(ii)亚纳米级晶内溶质团簇,(iii)两种纳米级晶间溶质结构的几何形状,以及(iv)直径数十纳米的晶粒尺寸。我们的结果表明,这种新的结构为新一代具有新性能-性能空间的超强材料提供了设计途径。