Agricultural Research Center for Climate Change, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju, Korea.
Plant Cell Rep. 2010 Dec;29(12):1339-49. doi: 10.1007/s00299-010-0920-y. Epub 2010 Sep 15.
Genetic transformation using a micro-cross section (MCS) technique was conducted to improve the carotenoid content in kiwifruit (Actinidia deliciosa cv. Hayward). The introduced carotenoid biosynthetic genes include geranylgeranyl diphosphate synthase (GGPS), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), β-carotene hydroxylase (CHX), and phytoene synthase (PSY). The transformed explants were selected on half-strength MS medium containing 0.001 mg l(-1) of 2,4-D and 0.1 mg l(-1) of zeatin, either 5 mg l(-1) hygromycin or 25 mg l(-1) kanamycin, and 500 mg l(-1) cefotaxime. The genomic PCR, genomic Southern blot analysis, and RT-PCR were performed to confirm the integration and expression of the transgenes. The transformation efficiencies of either kanamycin- or hygromycin-resistant shoots ranged from 2.9 to 22.1% depending on the target genes, and from 2.9 to 24.2% depending on the reporter genes. The selection efficiencies ranged from 66.7 to 100% for the target genes and from 95.8 to 100% for the reporter genes. Changes of carotenoid content in the several PCR-positive plants were determined by UPLC analysis. As a result, transgenic plants expressing either GGPS or PSY increased about 1.2- to 1.3-fold in lutein or β-carotene content compared to non-transgenic plants. Our results suggest that the Agrobacterium-mediated transformation efficiency of kiwifruit can be greatly increased by this MCS method and that the carotenoid biosynthetic pathway can be modified in kiwifruit by genetic transformation. Our results further suggest that GGPS and PSY genes could be major target genes to increase carotenoid contents in kiwifruit.
利用微切片(MCS)技术进行遗传转化,以提高猕猴桃(Actinidia deliciosa cv. Hayward)中的类胡萝卜素含量。引入的类胡萝卜素生物合成基因包括香叶基香叶基二磷酸合酶(GGPS)、八氢番茄红素脱氢酶(PDS)、ζ-胡萝卜素脱氢酶(ZDS)、β-胡萝卜素羟化酶(CHX)和番茄红素合酶(PSY)。转化的外植体在含有 0.001 mg·l(-1) 2,4-D 和 0.1 mg·l(-1) 玉米素的半强度 MS 培养基上进行选择,使用 5 mg·l(-1) 潮霉素或 25 mg·l(-1) 卡那霉素,以及 500 mg·l(-1) 头孢噻肟。通过基因组 PCR、基因组 Southern 印迹分析和 RT-PCR 证实了转基因的整合和表达。取决于靶基因,卡那霉素或潮霉素抗性芽的转化效率范围为 2.9%至 22.1%,取决于报告基因,转化效率范围为 2.9%至 24.2%。对于靶基因,选择效率范围为 66.7%至 100%,对于报告基因,选择效率范围为 95.8%至 100%。通过 UPLC 分析确定了几个 PCR 阳性植物中类胡萝卜素含量的变化。结果表明,与非转基因植物相比,表达 GGPS 或 PSY 的转基因植物叶黄素或β-胡萝卜素含量增加了 1.2-1.3 倍。我们的结果表明,通过这种 MCS 方法可以大大提高猕猴桃的农杆菌介导转化效率,并且可以通过遗传转化来修饰猕猴桃中的类胡萝卜素生物合成途径。我们的结果进一步表明,GGPS 和 PSY 基因可能是提高猕猴桃类胡萝卜素含量的主要靶基因。