Suppr超能文献

安第斯病毒对细胞 microRNAs 的调节导致汉坦病毒引起的内皮细胞通透性增加。

Andes virus regulation of cellular microRNAs contributes to hantavirus-induced endothelial cell permeability.

机构信息

Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA.

出版信息

J Virol. 2010 Nov;84(22):11929-36. doi: 10.1128/JVI.01658-10. Epub 2010 Sep 15.

Abstract

Hantaviruses infect human endothelial cells (ECs) and cause two diseases marked by vascular permeability defects, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Vascular permeability occurs in the absence of EC lysis, suggesting that hantaviruses alter normal EC fluid barrier functions. ECs infected by pathogenic hantaviruses are hyperresponsive to vascular endothelial growth factor (VEGF), and this alters the fluid barrier function of EC adherens junctions, resulting in enhanced paracellular permeability. Vascular permeability and VEGF-directed responses are determined by EC-specific microRNAs (miRNAs), which regulate cellular mRNA transcriptional responses. miRNAs mature within cytoplasmic processing bodies (P bodies), and the hantavirus nucleocapsid (N) protein binds RNA and localizes to P bodies, suggesting that hantaviruses may modify miRNA functions within infected ECs. Here we assessed changes in EC miRNAs following infection by the HPS-causing Andes hantavirus (ANDV). We analyzed 352 human miRNAs within ANDV-infected ECs using quantitative real-time (RT)-PCR arrays. Fourteen miRNAs, including six miRNAs that are associated with regulating vascular integrity, were upregulated >4-fold following infection by ANDV. Nine miRNAs were downregulated 3- to 3,400-fold following ANDV infection; these included miR-410, involved in regulating secretion, and miR-218, which is linked to the regulation of EC migration and vascular permeability. We further analyzed changes in miR-126, an EC-specific miRNA that regulates vascular integrity by suppressing SPRED1 and PIK3R2 mRNAs. While miR-126 levels were only slightly altered, we found that SPRED1 and PIK3R2 mRNA levels were increased 10- and 7-fold, respectively, in ANDV-infected ECs but were unaltered in ECs infected by the nonpathogenic Tula hantavirus (TULV). Consistent with increased SPRED1 expression, we found that the level of phospho-cofilin was decreased within ANDV-infected ECs. Moreover, small interfering RNA (siRNA) knockdown of SPRED1 dramatically decreased the permeability of ANDV-infected ECs in response to VEGF, suggesting that increased SPRED1 contributes to EC permeability following ANDV infection. These findings suggest that interference with normal miRNA functions contributes to the enhanced paracellular permeability of ANDV-infected ECs and that hantavirus regulation of miRNA functions is an additional determinant of hantavirus pathogenesis.

摘要

汉坦病毒感染人类内皮细胞(ECs),并导致两种以血管通透性缺陷为特征的疾病,即肾综合征出血热(HFRS)和汉坦病毒肺综合征(HPS)。血管通透性的发生并不伴随着 EC 裂解,这表明汉坦病毒改变了正常的 EC 液流屏障功能。感染致病性汉坦病毒的 ECs 对血管内皮生长因子(VEGF)高度敏感,这改变了 EC 黏附连接的液流屏障功能,导致增强的细胞旁通透性。血管通透性和 VEGF 定向反应由 EC 特异性 microRNAs(miRNAs)决定,它们调节细胞 mRNA 转录反应。miRNAs 在细胞质处理体(P 体)内成熟,而汉坦病毒核衣壳(N)蛋白结合 RNA 并定位于 P 体,这表明汉坦病毒可能在感染的 EC 内修饰 miRNA 功能。在这里,我们评估了 HPS 致病的安第斯汉坦病毒(ANDV)感染后 EC miRNAs 的变化。我们使用定量实时(RT)-PCR 阵列分析了感染 ANDV 的 EC 中的 352 种人类 miRNAs。在 ANDV 感染后,有 14 种 miRNAs(包括与调节血管完整性相关的 6 种 miRNAs)的表达上调了>4 倍。9 种 miRNAs 的表达下调了 3 到 3400 倍;其中包括 miR-410,其参与调节分泌,miR-218 与调节 EC 迁移和血管通透性有关。我们进一步分析了 EC 特异性 miRNA miR-126 的变化,该 miRNA 通过抑制 SPRED1 和 PIK3R2 mRNAs 来调节血管完整性。虽然 miR-126 的水平仅略有改变,但我们发现 ANDV 感染的 EC 中 SPRED1 和 PIK3R2 mRNA 的水平分别增加了 10 倍和 7 倍,而在感染非致病性图拉汉坦病毒(TULV)的 EC 中则没有改变。与 SPRED1 表达增加一致,我们发现 ANDV 感染的 EC 中的磷酸化原肌球蛋白水平降低。此外,SPRED1 的小干扰 RNA(siRNA)敲低显著降低了 ANDV 感染的 EC 对 VEGF 的通透性,表明 SPRED1 的增加有助于 ANDV 感染后的 EC 通透性。这些发现表明,干扰正常的 miRNA 功能导致 ANDV 感染的 EC 细胞旁通透性增强,而汉坦病毒对 miRNA 功能的调节是汉坦病毒发病机制的另一个决定因素。

相似文献

1
Andes virus regulation of cellular microRNAs contributes to hantavirus-induced endothelial cell permeability.
J Virol. 2010 Nov;84(22):11929-36. doi: 10.1128/JVI.01658-10. Epub 2010 Sep 15.
2
Slit2-Robo4 receptor responses inhibit ANDV directed permeability of human lung microvascular endothelial cells.
Antiviral Res. 2013 Aug;99(2):108-12. doi: 10.1016/j.antiviral.2013.05.004. Epub 2013 May 20.
6
VEGFR2 and Src kinase inhibitors suppress Andes virus-induced endothelial cell permeability.
J Virol. 2011 Mar;85(5):2296-303. doi: 10.1128/JVI.02319-10. Epub 2010 Dec 22.
9
Hantavirus interferon regulation and virulence determinants.
Virus Res. 2014 Jul 17;187:65-71. doi: 10.1016/j.virusres.2013.12.041. Epub 2014 Jan 8.

引用本文的文献

1
Monkeypox Virus Crosstalk with HIV: An Integrated Skin Transcriptome and Machine Learning Study.
ACS Omega. 2023 Nov 29;8(49):47283-47294. doi: 10.1021/acsomega.3c07687. eCollection 2023 Dec 12.
2
Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions.
J Cardiovasc Transl Res. 2024 Aug;17(4):739-767. doi: 10.1007/s12265-023-10469-4. Epub 2023 Dec 13.
3
Exosomal miRNA-155 and miRNA-146a are promising prognostic biomarkers of the severity of hemorrhagic fever with renal syndrome.
Noncoding RNA Res. 2022 Oct 27;8(1):75-82. doi: 10.1016/j.ncrna.2022.10.003. eCollection 2023 Mar.
5
Intercellular Communication by Vascular Endothelial Cell-Derived Extracellular Vesicles and Their MicroRNAs in Respiratory Diseases.
Front Mol Biosci. 2021 Jan 29;7:619697. doi: 10.3389/fmolb.2020.619697. eCollection 2020.
8
MicroRNA and cellular targets profiling reveal miR-217 and miR-576-3p as proviral factors during Oropouche infection.
PLoS Negl Trop Dis. 2018 May 29;12(5):e0006508. doi: 10.1371/journal.pntd.0006508. eCollection 2018 May.
9
Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis.
Vascul Pharmacol. 2019 Mar;114:64-75. doi: 10.1016/j.vph.2018.03.001. Epub 2018 Mar 15.
10
MicroRNAs in endothelial cell homeostasis and vascular disease.
Curr Opin Hematol. 2018 May;25(3):227-236. doi: 10.1097/MOH.0000000000000424.

本文引用的文献

2
Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells.
Biochem Biophys Res Commun. 2010 May 28;396(2):457-62. doi: 10.1016/j.bbrc.2010.04.116. Epub 2010 Apr 24.
3
MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor.
PLoS Genet. 2010 Mar 12;6(3):e1000879. doi: 10.1371/journal.pgen.1000879.
4
Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells.
J Virol. 2010 May;84(9):4832-9. doi: 10.1128/JVI.02405-09. Epub 2010 Feb 24.
6
MicroRNAs in the tumor endothelium: novel controls on the angioregulatory switchboard.
Biochim Biophys Acta. 2010 Jan;1805(1):87-96. doi: 10.1016/j.bbcan.2009.09.005. Epub 2009 Sep 25.
7
Systematic validation of predicted microRNAs for cyclin D1.
BMC Cancer. 2009 Jun 18;9:194. doi: 10.1186/1471-2407-9-194.
8
AngiomiRs--key regulators of angiogenesis.
Curr Opin Genet Dev. 2009 Jun;19(3):205-11. doi: 10.1016/j.gde.2009.04.002. Epub 2009 May 14.
9
HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells.
Blood. 2009 May 28;113(22):5669-79. doi: 10.1182/blood-2009-01-196485. Epub 2009 Apr 7.
10
Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis.
Angiogenesis. 2009;12(2):177-85. doi: 10.1007/s10456-009-9141-9. Epub 2009 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验