Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
Cerebellum. 2012 Sep;11(3):666-80. doi: 10.1007/s12311-010-0210-9.
Cerebellar Purkinje cells (PCs) encode afferent information in the rate and temporal structure of their spike trains. Both spontaneous firing in these neurons and its modulation by synaptic inputs depend on Ca(2+) current carried by Ca(v)2.1 (P/Q) type channels. Previous studies have described how loss-of-function Ca(v)2.1 mutations affect intrinsic excitability and excitatory transmission in PCs. This study examines the effects of the leaner mutation on fast GABAergic transmission and its modulation of spontaneous firing in PCs. The leaner mutation enhances spontaneous synaptic inhibition of PCs, leading to transitory reductions in PC firing rate and increased spike rate variability. Enhanced inhibition is paralleled by an increase in the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) measured under voltage clamp. These differences are abolished by tetrodotoxin, implicating effects of the mutation on spike-induced GABA release. Elevated sIPSC frequency in leaner PCs is not accompanied by increased mean firing rate in molecular layer interneurons, but IPSCs evoked in PCs by direct stimulation of these neurons exhibit larger amplitude, slower decay rate, and a higher burst probability compared to wild-type PCs. Ca(2+) release from internal stores appears to be required for enhanced inhibition since differences in sIPSC frequency and amplitude in leaner and wild-type PCs are abolished by thapsigargin, an ER Ca(2+) pump inhibitor. These findings represent the first account of the functional consequences of a loss-of-function P/Q channel mutation on PC firing properties through altered GABAergic transmission. Gain in synaptic inhibition shown here would compromise the fidelity of information coding in these neurons and may contribute to impaired cerebellar function resulting from loss-of function mutations in the Ca(V)2.1 channel gene.
小脑浦肯野细胞(PCs)通过其尖峰列车的速率和时间结构对传入信息进行编码。这些神经元中的自发放电及其对突触输入的调制都依赖于 Ca(v)2.1(P/Q)型通道携带的 Ca(2+)电流。以前的研究已经描述了功能丧失型 Ca(v)2.1 突变如何影响 PCs 的固有兴奋性和兴奋性传递。本研究检查了更瘦突变对快速 GABA 能传递及其对 PCs 自发放电的调制的影响。更瘦的突变增强了 PCs 的自发突触抑制,导致 PCs 的放电率暂时降低,尖峰率变异性增加。增强的抑制伴随着在电压钳下测量的自发抑制性突触后电流(sIPSCs)的频率和幅度增加。这些差异被河豚毒素消除,暗示突变对尖峰诱导的 GABA 释放的影响。在更瘦的 PCs 中,sIPSC 频率升高并不伴有分子层中间神经元的平均放电率增加,但直接刺激这些神经元在 PCs 中诱发的 IPSC 表现出更大的幅度、更慢的衰减率和更高的爆发概率与野生型 PCs 相比。内部储存器中的 Ca(2+)释放似乎是增强抑制所必需的,因为在更瘦和野生型 PCs 中 sIPSC 频率和幅度的差异被 thapsigargin(内质网 Ca(2+)泵抑制剂)消除。这些发现代表了功能丧失型 P/Q 通道突变对 PC 放电特性的改变通过改变 GABA 能传递对 PC 放电特性的功能后果的第一个描述。这里显示的突触抑制增加会损害这些神经元中信息编码的保真度,并可能导致 Ca(V)2.1 通道基因突变引起的小脑功能障碍。