Institut für Elektrochemie, Universität Ulm, Albert-Einstein-Allee 47, 89081, Ulm, Germany.
Chemistry. 2010 Nov 2;16(41):12381-6. doi: 10.1002/chem.201001396.
The development of high-performance molecular electronics and nanotech applications requires deep understanding of atomic level structural, electronic, and magnetic properties of electrode/molecular interfaces. Recent electrochemical experiments on self-assembled monolayers (SAMs) have identified highly practical means to generate nanoparticles and metal monolayers suspended above substrate surfaces through SAM metallizations. A rational basis why this process is even possible is not yet well-understood. To clarify the initial stages of interface formation during SAM metallization, we used first-principles spin-polarized density functional theory (DFT) calculations to study Pd diffusion on top of 4-mercaptopyridine (4MP) SAMs on Au(111). After distinguishing potential-energy surfaces (PESs) for different spin configurations for transition metal atoms on the SAM, we find adatom diffusion is not possible over the clean 4MP-SAM surface. Pre-adsorption of transition-metal atoms, however, facilitates atomic diffusion that appears to explain multiple reports on experimentally observed island and monolayer formation on top of SAMs. Furthermore, these diffusions most likely occur by moving across low-lying and intersecting PESs of different spin states, opening the possibility of magnetic control over these systems. Vertical diffusion processes were also investigated, and the electrolyte was found to play a key role in preventing metal permeation through the SAM to the substrate.
高性能分子电子学和纳米技术应用的发展需要深入了解电极/分子界面的原子级结构、电子和磁性特性。最近关于自组装单层(SAM)的电化学实验已经确定了一种非常实用的方法,可以通过 SAM 金属化在基底表面上方生成纳米颗粒和金属单层。然而,为什么这个过程是可行的,其合理的基础尚未得到很好的理解。为了阐明 SAM 金属化过程中界面形成的初始阶段,我们使用第一性原理自旋极化密度泛函理论(DFT)计算来研究 Pd 在 Au(111)上的 4-巯基吡啶(4MP)SAM 顶部的扩散。在区分 SAM 上过渡金属原子不同自旋构型的势能面(PES)之后,我们发现在清洁的 4MP-SAM 表面上,吸附加原子的扩散是不可能的。然而,过渡金属原子的预吸附促进了原子扩散,这似乎可以解释在 SAM 顶部观察到的岛和单层形成的多个实验报告。此外,这些扩散很可能是通过跨越不同自旋态的低能相交 PES 来发生的,这为这些系统的磁控制开辟了可能性。还研究了垂直扩散过程,发现电解质在防止金属通过 SAM 渗透到基底中起着关键作用。