Suppr超能文献

人源 c-Myc 启动子中核酸酶敏感元件内形成的主要 G-四链体及其环异构体的热力学稳定性和折叠动力学:环和侧翼片段对平行链内 G-四链体稳定性的影响。

Thermodynamic stability and folding kinetics of the major G-quadruplex and its loop isomers formed in the nuclease hypersensitive element in the human c-Myc promoter: effect of loops and flanking segments on the stability of parallel-stranded intramolecular G-quadruplexes.

机构信息

College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA.

出版信息

Biochemistry. 2010 Nov 2;49(43):9152-60. doi: 10.1021/bi100946g.

Abstract

Overexpression of the c-Myc proto-oncogene is associated with a broad spectrum of human cancers. Nuclease hypersensitivity element III(1) (NHE III(1)) of the c-Myc promoter can form transcriptionally active and silenced forms, and the formation of DNA G-quadruplex structures has been shown to be critical for c-Myc transcriptional silencing. The major G-quadruplex formed in c-Myc NHE III(1) is a mixture of four loop isomers, which have all been shown to be biologically relevant to c-Myc transcriptional control. In this study, we performed a thorough thermodynamic and kinetic study of the four c-Myc loop isomers in a K(+) solution. The four loop isomers all form parallel-stranded G-quadruplexes with short loop lengths. While the parallel-stranded G-quadruplex has been known to favor short loop lengths, our results show that the difference in thermodynamic and kinetic properties of the four loop isomers, and hence between the parallel G-quadruplexes with similar loop lengths, is more significant than previously recognized. At 20 mM K(+), the average difference in the T(m) values between the most stable loop isomer 14/23 and the least stable loop isomer 11/20 is more than 10 °C. In addition, the capping structures formed by the extended flanking segments are shown to contribute to a stabilization of 2-3 °C in T(m) for the c-Myc promoter G-quadruplex. Understanding the intrinsic thermodynamic stability and kinetic properties of the c-Myc G-quadruplex loop isomers can aid in our understanding of their biological roles and drug targeting.

摘要

c-Myc 原癌基因的过表达与广泛的人类癌症有关。c-Myc 启动子的核酶超敏元件 III(1)(NHE III(1))可以形成转录活跃和沉默的形式,并且已经表明 DNA G-四链体结构的形成对于 c-Myc 转录沉默至关重要。c-Myc NHE III(1)中形成的主要 G-四链体是四种环异构体的混合物,所有这些都被证明与 c-Myc 转录控制具有生物学相关性。在这项研究中,我们在 K(+)溶液中对四种 c-Myc 环异构体进行了全面的热力学和动力学研究。这四种环异构体都形成具有短环长度的平行链 G-四链体。虽然已知平行链 G-四链体有利于短环长度,但我们的结果表明,四种环异构体的热力学和动力学性质之间的差异,以及具有相似环长度的平行 G-四链体之间的差异,比以前认识到的更为显著。在 20 mM K(+)下,最稳定的环异构体 14/23 和最不稳定的环异构体 11/20 之间 T(m)值的平均差异超过 10°C。此外,扩展侧翼片段形成的加帽结构有助于稳定 c-Myc 启动子 G-四链体的 T(m)值 2-3°C。了解 c-Myc G-四链体环异构体的固有热力学稳定性和动力学特性可以帮助我们理解它们的生物学作用和药物靶向。

相似文献

4
Structure of the biologically relevant G-quadruplex in the c-MYC promoter.
Nucleosides Nucleotides Nucleic Acids. 2006;25(8):951-68. doi: 10.1080/15257770600809913.
5
DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting.
Acc Chem Res. 2022 Sep 20;55(18):2628-2646. doi: 10.1021/acs.accounts.2c00337. Epub 2022 Sep 2.
8
Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element.
Semin Oncol. 2006 Aug;33(4):498-512. doi: 10.1053/j.seminoncol.2006.04.012.
10
The 3'-end region of the human PDGFR-β core promoter nuclease hypersensitive element forms a mixture of two unique end-insertion G-quadruplexes.
Biochim Biophys Acta Gen Subj. 2018 Apr;1862(4):846-854. doi: 10.1016/j.bbagen.2017.12.011. Epub 2017 Dec 28.

引用本文的文献

2
Three- and four-stranded nucleic acid structures and their ligands.
RSC Chem Biol. 2025 Feb 19;6(4):466-491. doi: 10.1039/d4cb00287c. eCollection 2025 Apr 2.
4
G-quadruplex formation in RNA aptamers selected for binding to HIV-1 capsid.
Front Chem. 2024 Oct 22;12:1425515. doi: 10.3389/fchem.2024.1425515. eCollection 2024.
5
Molecular Insights into the Specific Targeting of G-Quadruplex by Thiazole Peptides.
Int J Mol Sci. 2024 Jan 3;25(1):623. doi: 10.3390/ijms25010623.
6
Single-Molecule Analysis of the Improved Variants of the G-Quadruplex Recognition Protein G4P.
Int J Mol Sci. 2023 Jun 17;24(12):10274. doi: 10.3390/ijms241210274.
7
DNA G-Quadruplex Recognition In Vitro and in Live Cells by a Structure-Specific Nanobody.
J Am Chem Soc. 2022 Dec 21;144(50):23096-23103. doi: 10.1021/jacs.2c10656. Epub 2022 Dec 9.
8
DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting.
Acc Chem Res. 2022 Sep 20;55(18):2628-2646. doi: 10.1021/acs.accounts.2c00337. Epub 2022 Sep 2.
9
G4-quadruplex-binding proteins: review and insights into selectivity.
Biophys Rev. 2022 Apr 20;14(3):635-654. doi: 10.1007/s12551-022-00952-8. eCollection 2022 Jun.

本文引用的文献

1
Quadruplexes of human telomere dG(3)(TTAG(3))(3) sequences containing guanine abasic sites.
Biochem Biophys Res Commun. 2010 Aug 20;399(2):203-8. doi: 10.1016/j.bbrc.2010.07.055. Epub 2010 Jul 17.
2
Structural insights into G-quadruplexes: towards new anticancer drugs.
Future Med Chem. 2010 Apr;2(4):619-46. doi: 10.4155/fmc.09.172.
3
Stable lariat formation based on a G-quadruplex scaffold.
J Am Chem Soc. 2008 Dec 10;130(49):16470-1. doi: 10.1021/ja806535j.
5
Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions.
Biochimie. 2008 Aug;90(8):1149-71. doi: 10.1016/j.biochi.2008.02.020. Epub 2008 Feb 29.
7
Quadruplex melting.
Methods. 2007 Dec;43(4):291-301. doi: 10.1016/j.ymeth.2007.05.004.
8
Intramolecular DNA quadruplexes with different arrangements of short and long loops.
Nucleic Acids Res. 2007;35(12):4214-22. doi: 10.1093/nar/gkm316. Epub 2007 Jun 18.
9
Fluorescence-based melting assays for studying quadruplex ligands.
Methods. 2007 Jun;42(2):183-95. doi: 10.1016/j.ymeth.2006.10.004.
10
Sequence effects of single base loops in intramolecular quadruplex DNA.
FEBS Lett. 2007 Apr 17;581(8):1657-60. doi: 10.1016/j.febslet.2007.03.040. Epub 2007 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验