Suppr超能文献

法尼醇 X 受体通过促进过氧化物酶体增殖物激活受体-γ并干扰 Wnt/β-连环蛋白途径来调节脂肪细胞分化和功能。

The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways.

机构信息

Université Lille Nord de France, F-59000 Lille, France.

出版信息

J Biol Chem. 2010 Nov 19;285(47):36759-67. doi: 10.1074/jbc.M110.166231. Epub 2010 Sep 17.

Abstract

The bile acid receptor farnesoid X receptor (FXR) is expressed in adipose tissue, but its function remains poorly defined. Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipocyte differentiation and function. The aim of this study was to analyze the role of FXR in adipocyte function and to assess whether it modulates PPARγ action. Therefore, we tested the responsiveness of FXR-deficient mice (FXR(-/-)) and cells to the PPARγ activator rosiglitazone. Our results show that genetically obese FXR(-/-)/ob/ob mice displayed a resistance to rosiglitazone treatment. In vitro, rosiglitazone treatment did not induce normal adipocyte differentiation and lipid droplet formation in FXR(-/-) mouse embryonic fibroblasts (MEFs) and preadipocytes. Moreover, FXR(-/-) MEFs displayed both an increased lipolysis and a decreased de novo lipogenesis, resulting in reduced intracellular triglyceride content, even upon PPARγ activation. Retroviral-mediated FXR re-expression in FXR(-/-) MEFs restored the induction of adipogenic marker genes during rosiglitazone-forced adipocyte differentiation. The expression of Wnt/β-catenin pathway and target genes was increased in FXR(-/-) adipose tissue and MEFs. Moreover, the expression of several endogenous inhibitors of this pathway was decreased early during the adipocyte differentiation of FXR(-/-) MEFs. These findings demonstrate that FXR regulates adipocyte differentiation and function by regulating two counteracting pathways of adipocyte differentiation, the PPARγ and Wnt/β-catenin pathways.

摘要

法尼醇 X 受体 (FXR) 表达于脂肪组织,但它的功能仍未被充分定义。过氧化物酶体增殖物激活受体-γ (PPARγ) 是脂肪细胞分化和功能的主要调节因子。本研究旨在分析 FXR 在脂肪细胞功能中的作用,并评估其是否调节 PPARγ 作用。因此,我们检测了 FXR 缺陷型 (FXR(-/-)) 小鼠和细胞对 PPARγ 激活剂罗格列酮的反应性。我们的结果表明,肥胖的 FXR(-/-)/ob/ob 小鼠对罗格列酮治疗表现出抗性。在体外,罗格列酮处理未能诱导 FXR(-/-) 小鼠胚胎成纤维细胞 (MEFs) 和前脂肪细胞的正常脂肪细胞分化和脂滴形成。此外,FXR(-/-) MEFs 表现出增加的脂解作用和减少的从头脂肪生成作用,导致细胞内甘油三酯含量减少,即使在 PPARγ 激活后也是如此。逆转录病毒介导的 FXR 在 FXR(-/-) MEFs 中的重新表达恢复了在罗格列酮强制脂肪细胞分化过程中诱导脂肪生成标记基因的表达。Wnt/β-catenin 通路及其靶基因的表达在 FXR(-/-) 脂肪组织和 MEFs 中增加。此外,在 FXR(-/-) MEFs 的脂肪细胞分化早期,几种该通路的内源性抑制剂的表达减少。这些发现表明,FXR 通过调节 PPARγ 和 Wnt/β-catenin 两条相反的脂肪细胞分化途径来调节脂肪细胞分化和功能。

相似文献

4
The role of prolyl hydroxylase domain protein (PHD) during rosiglitazone-induced adipocyte differentiation.
J Biol Chem. 2014 Jan 31;289(5):2755-64. doi: 10.1074/jbc.M113.493650. Epub 2013 Dec 12.
6
8
Novel genes regulated by the insulin sensitizer rosiglitazone during adipocyte differentiation.
Diabetes. 2002 Apr;51(4):1042-51. doi: 10.2337/diabetes.51.4.1042.
10
The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo.
Mol Pharmacol. 2006 Oct;70(4):1164-73. doi: 10.1124/mol.106.023820. Epub 2006 Jun 15.

引用本文的文献

1
FXR crosstalk with other nuclear receptors.
J Physiol Biochem. 2025 Aug 12. doi: 10.1007/s13105-025-01118-2.
4
The gut microbiota-bile acid-TGR5 axis orchestrates platelet activation and atherothrombosis.
Nat Cardiovasc Res. 2025 May;4(5):584-601. doi: 10.1038/s44161-025-00637-x. Epub 2025 Apr 11.
5
How bile acids and the microbiota interact to shape host immunity.
Nat Rev Immunol. 2024 Nov;24(11):798-809. doi: 10.1038/s41577-024-01057-x. Epub 2024 Jul 15.
6
[Impact of lithocholic acid on the osteogenic and adipogenic differentiation balance of bone marrow mesenchymal stem cells].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2024 Jan 15;38(1):82-90. doi: 10.7507/1002-1892.202308050.
7
Pharmacological modulation of adaptive thermogenesis: new clues for obesity management?
J Endocrinol Invest. 2023 Nov;46(11):2213-2236. doi: 10.1007/s40618-023-02125-0. Epub 2023 Jun 28.
8
Pathological bile acid concentrations in chronic cholestasis cause adipose mitochondrial defects.
JHEP Rep. 2023 Feb 23;5(5):100714. doi: 10.1016/j.jhepr.2023.100714. eCollection 2023 May.
9
Obesity I: Overview and molecular and biochemical mechanisms.
Biochem Pharmacol. 2022 May;199:115012. doi: 10.1016/j.bcp.2022.115012. Epub 2022 Apr 5.
10
AKR1D1 knockout mice develop a sex-dependent metabolic phenotype.
J Endocrinol. 2022 Apr 13;253(3):97-113. doi: 10.1530/JOE-21-0280.

本文引用的文献

1
Proximal events in Wnt signal transduction.
Nat Rev Mol Cell Biol. 2009 Jul;10(7):468-77. doi: 10.1038/nrm2717.
2
Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses.
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9425-9. doi: 10.1073/pnas.0903909106. Epub 2009 May 27.
3
Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes.
J Biol Chem. 2009 Jul 3;284(27):18282-91. doi: 10.1074/jbc.M109.008631. Epub 2009 May 11.
4
New developments in adipogenesis.
Trends Endocrinol Metab. 2009 Apr;20(3):107-14. doi: 10.1016/j.tem.2008.11.005. Epub 2009 Mar 9.
5
Role of bile acids and bile acid receptors in metabolic regulation.
Physiol Rev. 2009 Jan;89(1):147-91. doi: 10.1152/physrev.00010.2008.
7
Nuclear bile acid receptor FXR protects against intestinal tumorigenesis.
Cancer Res. 2008 Dec 1;68(23):9589-94. doi: 10.1158/0008-5472.CAN-08-1791.
8
Adipogenesis and WNT signalling.
Trends Endocrinol Metab. 2009 Jan;20(1):16-24. doi: 10.1016/j.tem.2008.09.002. Epub 2008 Nov 13.
9
The adipocyte as an endocrine cell.
Endocrinol Metab Clin North Am. 2008 Sep;37(3):753-68, x-xi. doi: 10.1016/j.ecl.2008.07.002.
10
FXR-deficiency confers increased susceptibility to torpor.
FEBS Lett. 2007 Nov 13;581(27):5191-8. doi: 10.1016/j.febslet.2007.09.064. Epub 2007 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验