Suppr超能文献

粉蚧亚科(半翅目:蚧总科:伪蚧科)内共生原虫的进化关系。

Evolutionary relationships among primary endosymbionts of the mealybug subfamily phenacoccinae (hemiptera: Coccoidea: Pseudococcidae).

机构信息

Penn State Erie School of Science, Erie, PA 16563-0203, USA.

出版信息

Appl Environ Microbiol. 2010 Nov;76(22):7521-5. doi: 10.1128/AEM.01354-10. Epub 2010 Sep 17.

Abstract

Mealybugs (Coccoidea: Pseudococcidae) are sap-sucking plant parasites that harbor bacterial endosymbionts within specialized organs. Previous studies have identified two subfamilies, Pseudococcinae and Phenacoccinae, within mealybugs and determined the primary endosymbionts (P-endosymbionts) of the Pseudococcinae to be Betaproteobacteria ("Candidatus Tremblaya princeps") containing Gammaproteobacteria secondary symbionts. Here, the P-endosymbionts of phenacoccine mealybugs are characterized based on 16S rRNA from the bacteria of 20 species of phenacoccine mealybugs and four outgroup Puto species (Coccoidea: Putoidae) and aligned to more than 100 published 16S rRNA sequences from symbiotic and free-living bacteria. Phylogenetic analyses recovered three separate lineages of bacteria from the Phenacoccinae, and these are considered to be the P-endosymbionts of their respective mealybug hosts, with those from (i) the mealybug genus Rastrococcus belonging to the Bacteroidetes, (ii) the subterranean mealybugs, tribe Rhizoecini, also within Bacteroidetes, in a clade sister to cockroach endosymbionts (Blattabacterium), and (iii) the remaining Phenacoccinae within the Betaproteobacteria, forming a well-supported sister group to "Candidatus Tremblaya princeps." Names are proposed for two strongly supported lineages: "Candidatus Brownia rhizoecola" for P-endosymbionts of Rhizoecini and "Candidatus Tremblaya phenacola" for P-endosymbionts of Phenacoccinae excluding Rastrococcus and Rhizoecini. Rates of nucleotide substitution among lineages of Tremblaya were inferred to be significantly faster than those of free-living Betaproteobacteria. Analyses also recovered a clade of Gammaproteobacteria, sister to the P-endosymbiont lineage of aphids ("Candidatus Buchnera aphidicola"), containing the endosymbionts of Putoidae, the secondary endosymbionts of pseudococcine mealybugs, and the endosymbionts of several other insect groups.

摘要

粉蚧(同翅目:粉蚧科)是吸食植物汁液的植物寄生虫,其体内有专门的器官来容纳细菌内共生体。先前的研究已确定粉蚧科分为两个亚科,伪叶蝉亚科和 Phenacoccinae,并确定了伪叶蝉亚科的主要内共生体(P-内共生体)为β变形菌(“ Tremblaya princeps ”),其中包含γ变形菌的次要共生体。在此,基于来自 20 种 Phenacoccinae 粉蚧和四个外群 Puto 种(同翅目:Putoidae)的细菌 16S rRNA 以及与 100 多个共生和自由生活细菌的 16S rRNA 序列的比对,对 Phenacoccinae 的 P-内共生体进行了特征描述。系统发育分析从 Phenacoccinae 中恢复了三个独立的细菌谱系,这些被认为是其相应粉蚧宿主的 P-内共生体,其中来自(i)粉蚧属 Rastrococcus 的内共生体属于拟杆菌门,(ii)地下粉蚧,Rhizoecini 部落,也属于拟杆菌门,与蟑螂内共生体(Blattabacterium)的姐妹群,以及(iii)其余 Phenacoccinae 内共生体在β变形菌中,形成了一个与“ Tremblaya princeps ”密切相关的支持良好的姐妹群。提出了两个得到强烈支持的谱系的名称:“ Rhizoecicola brownia ”,用于 Rhizoecini 的 P-内共生体,以及“ Phenacola tremblaya ”,用于除 Rastrococcus 和 Rhizoecini 以外的 Phenacoccinae 的 P-内共生体。在 Tremblaya 的谱系之间推断出核苷酸取代率明显快于自由生活的β变形菌。分析还恢复了一个γ变形菌的分支,与蚜虫的 P-内共生体(“ Buchnera aphidicola ”)的姐妹群,其中包含 Putoidae 的内共生体、粉蚧的次要内共生体以及其他几个昆虫群的内共生体。

相似文献

1
Evolutionary relationships among primary endosymbionts of the mealybug subfamily phenacoccinae (hemiptera: Coccoidea: Pseudococcidae).
Appl Environ Microbiol. 2010 Nov;76(22):7521-5. doi: 10.1128/AEM.01354-10. Epub 2010 Sep 17.
3
Mealybugs with distinct endosymbiotic systems living on the same host plant.
FEMS Microbiol Ecol. 2013 Jan;83(1):93-100. doi: 10.1111/j.1574-6941.2012.01450.x. Epub 2012 Aug 6.
5
The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps.
Front Microbiol. 2015 Jun 25;6:642. doi: 10.3389/fmicb.2015.00642. eCollection 2015.
7
Tremblaya phenacola PPER: an evolutionary beta-gammaproteobacterium collage.
ISME J. 2018 Jan;12(1):124-135. doi: 10.1038/ismej.2017.144. Epub 2017 Sep 15.
8
Infection dynamics of coexisting beta- and gammaproteobacteria in the nested endosymbiotic system of mealybugs.
Appl Environ Microbiol. 2008 Jul;74(13):4175-84. doi: 10.1128/AEM.00250-08. Epub 2008 May 9.
10
Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts.
ISME J. 2017 Mar;11(3):715-726. doi: 10.1038/ismej.2016.148. Epub 2016 Dec 16.

引用本文的文献

1
Accelerated Pseudogenization in the Ancient Endosymbionts of Giant Scale Insects.
Mol Biol Evol. 2025 Jun 4;42(6). doi: 10.1093/molbev/msaf125.
4
Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae).
ISME J. 2022 Mar;16(3):642-654. doi: 10.1038/s41396-021-01102-w. Epub 2021 Sep 10.
5
The Ubiquity and Development-Related Abundance Dynamics of Fungi in Soft Scale Insects.
Microorganisms. 2021 Feb 16;9(2):404. doi: 10.3390/microorganisms9020404.
6
The Diversity of Symbiotic Systems in Scale Insects.
Results Probl Cell Differ. 2020;69:469-495. doi: 10.1007/978-3-030-51849-3_18.
7
Bacteriome-Associated Endosymbiotic Bacteria of Tree Sap Beetles (Coleoptera: Nosodendridae).
Front Microbiol. 2020 Oct 29;11:588841. doi: 10.3389/fmicb.2020.588841. eCollection 2020.
8
Cosmopolitan Distribution of -Like Organisms and Other Intracellular Microcolonies of Bacteria Causing Infection in Marine Mollusks.
Front Microbiol. 2020 Oct 30;11:577481. doi: 10.3389/fmicb.2020.577481. eCollection 2020.
9
The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective.
Microorganisms. 2020 Sep 19;8(9):1438. doi: 10.3390/microorganisms8091438.
10
Reproductive pattern in the solanum mealybug, : A new perspective.
PeerJ. 2020 Aug 25;8:e9734. doi: 10.7717/peerj.9734. eCollection 2020.

本文引用的文献

1
The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis.
Cladistics. 1999 Dec;15(4):407-414. doi: 10.1111/j.1096-0031.1999.tb00277.x.
4
Genomics and evolution of heritable bacterial symbionts.
Annu Rev Genet. 2008;42:165-90. doi: 10.1146/annurev.genet.41.110306.130119.
5
The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly.
Appl Environ Microbiol. 2008 Oct;74(19):5965-74. doi: 10.1128/AEM.00741-08. Epub 2008 Aug 8.
6
Parallel genomic evolution and metabolic interdependence in an ancient symbiosis.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19392-7. doi: 10.1073/pnas.0708855104. Epub 2007 Nov 28.
7
PAML 4: phylogenetic analysis by maximum likelihood.
Mol Biol Evol. 2007 Aug;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub 2007 May 4.
8
Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes.
Mol Phylogenet Evol. 2007 Jul;44(1):267-80. doi: 10.1016/j.ympev.2007.01.014. Epub 2007 Feb 15.
10
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics. 2006 Nov 1;22(21):2688-90. doi: 10.1093/bioinformatics/btl446. Epub 2006 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验