Rockefeller University, Laboratory of Bacterial Pathogenesis and Immunology, 1230 York Ave., Box 172, New York, NY 10065, USA.
Appl Environ Microbiol. 2010 Nov;76(21):7181-7. doi: 10.1128/AEM.00732-10. Epub 2010 Sep 17.
Recent metagenomic sequencing studies of uncultured viral populations have provided novel insights into the ecology of environmental bacteriophage. At the same time, viral metagenomes could also represent a potential source of recombinant proteins with biotechnological value. In order to identify such proteins, a novel two-step screening technique was devised for cloning phage lytic enzymes from uncultured viral DNA. This plasmid-based approach first involves a primary screen in which transformed Escherichia coli clones that demonstrate colony lysis following exposure to inducing agent are identified. This effect, which can be due to the expression of membrane-permeabilizing phage holins, is discerned by the development a hemolytic effect in surrounding blood agar. In a secondary step, the clones identified in the primary screen are overlaid with autoclaved Gram-negative bacteria (specifically Pseudomonas aeruginosa) to assay directly for recombinant expression of lytic enzymes, which are often encoded proximally to holins in phage genomes. As proof-of-principle, the method was applied to a viral metagenomic library constructed from mixed animal feces, and 26 actively expressed lytic enzymes were cloned. These proteins include both Gram-positive-like and Gram-negative-like enzymes, as well as several atypical lysins whose predicted structures are less common among known phage. Overall, this study represents one of the first functional screens of a viral metagenomic population, and it provides a general approach for characterizing lysins from uncultured phage.
最近对未培养的病毒群体进行的宏基因组测序研究,为环境噬菌体的生态学提供了新的见解。与此同时,病毒宏基因组也可能代表具有生物技术价值的重组蛋白的潜在来源。为了鉴定这些蛋白质,设计了一种新颖的两步筛选技术,用于从未培养的病毒 DNA 中克隆噬菌体裂解酶。这种基于质粒的方法首先涉及初级筛选,其中鉴定出在暴露于诱导剂后表现出菌落裂解的转化大肠杆菌克隆。这种效应可能是由于膜透化噬菌体 holin 的表达引起的,可以通过在周围血琼脂中出现溶血效应来识别。在第二步中,在初级筛选中鉴定的克隆与高压灭菌的革兰氏阴性细菌(特别是铜绿假单胞菌)叠加,以直接检测裂解酶的重组表达,这些酶通常在噬菌体基因组中靠近 holin 编码。作为原理验证,该方法应用于从混合动物粪便构建的病毒宏基因组文库,克隆了 26 种活性表达的裂解酶。这些蛋白质包括革兰氏阳性样和革兰氏阴性样酶,以及几种预测结构在已知噬菌体中不太常见的非典型溶菌酶。总体而言,这项研究代表了对病毒宏基因组群体的首次功能筛选之一,为从未培养的噬菌体中鉴定溶菌酶提供了一种通用方法。