Zhang Xiaohua Douglas, Lacson Raul, Yang Ruojing, Marine Shane D, McCampbell Alex, Toolan Dawn M, Hare Tim R, Kajdas Joleen, Berger Joel P, Holder Daniel J, Heyse Joseph F, Ferrer Marc
Biometrics Research, Merck Research Laboratories, West Point, PA 19486, USA.
J Biomol Screen. 2010 Oct;15(9):1123-31. doi: 10.1177/1087057110381919. Epub 2010 Sep 17.
In genome-scale RNA interference (RNAi) screens, it is critical to control false positives and false negatives statistically. Traditional statistical methods for controlling false discovery and false nondiscovery rates are inappropriate for hit selection in RNAi screens because the major goal in RNAi screens is to control both the proportion of short interfering RNAs (siRNAs) with a small effect among selected hits and the proportion of siRNAs with a large effect among declared nonhits. An effective method based on strictly standardized mean difference (SSMD) has been proposed for statistically controlling false discovery rate (FDR) and false nondiscovery rate (FNDR) appropriate for RNAi screens. In this article, the authors explore the utility of the SSMD-based method for hit selection in RNAi screens. As demonstrated in 2 genome-scale RNAi screens, the SSMD-based method addresses the unmet need of controlling for the proportion of siRNAs with a small effect among selected hits, as well as controlling for the proportion of siRNAs with a large effect among declared nonhits. Furthermore, the SSMD-based method results in reasonably low FDR and FNDR for selecting inhibition or activation hits. This method works effectively and should have a broad utility for hit selection in RNAi screens with replicates.
在全基因组规模的RNA干扰(RNAi)筛选中,从统计学角度控制假阳性和假阴性至关重要。传统的用于控制错误发现率和错误未发现率的统计方法不适用于RNAi筛选中的命中选择,因为RNAi筛选的主要目标是控制所选命中中效应较小的小干扰RNA(siRNA)的比例以及声明的非命中中效应较大的siRNA的比例。已提出一种基于严格标准化均值差(SSMD)的有效方法,用于在统计学上控制适用于RNAi筛选的错误发现率(FDR)和错误未发现率(FNDR)。在本文中,作者探讨了基于SSMD的方法在RNAi筛选命中选择中的实用性。如在两次全基因组规模的RNAi筛选中所证明的,基于SSMD的方法满足了控制所选命中中效应较小的siRNA比例以及控制声明的非命中中效应较大的siRNA比例这一未满足的需求。此外,基于SSMD的方法在选择抑制或激活命中时会产生合理较低的FDR和FNDR。该方法有效,并且对于有重复的RNAi筛选中的命中选择应具有广泛的实用性。