Suppr超能文献

整合组合文库的计算和基于混合物的筛选。

Integrating computational and mixture-based screening of combinatorial libraries.

机构信息

Torrey Pines Institute for Molecular Studies, Port St Lucie, FL 34987, USA.

出版信息

J Mol Model. 2011 Jun;17(6):1473-82. doi: 10.1007/s00894-010-0850-1. Epub 2010 Sep 21.

Abstract

Mixture-based synthetic combinatorial library (MB-SCL) screening is a well-established experimental approach for rapidly retrieving structure-activity relationships (SAR) and identifying hits. Virtual screening is also a powerful approach that is increasingly being used in drug discovery programs and has a growing number of successful applications. However, limited efforts have been made to integrate both techniques. To this end, we combined experimental data from a MB-SCL of bicyclic guanidines screened against the κ-opioid receptor and molecular similarity methods. The activity data and similarity analyses were integrated in a biometric analysis-similarity map. Such a map allows the molecules to be categorized as actives, activity cliffs, low similarity to the reference compounds, or missed hits. A compound with IC(50) = 309 nM was found in the "missed hits" region, showing that active compounds can be retrieved from a MS-SCL via computational approaches. The strategy presented in this work is general and is envisioned as a general-purpose approach that can be applied to other MB-SCLs.

摘要

基于混合物的合成组合文库(MB-SCL)筛选是一种快速获取结构-活性关系(SAR)和鉴定命中物的成熟实验方法。虚拟筛选也是一种强大的方法,越来越多地应用于药物发现计划,并取得了越来越多的成功应用。然而,将这两种技术结合起来的努力有限。为此,我们将针对κ-阿片受体筛选的双环胍 MB-SCL 的实验数据与分子相似性方法相结合。活性数据和相似性分析被整合在生物计量分析-相似性图谱中。这样的图谱可以将分子分类为活性物、活性悬崖、与参考化合物的低相似性或错过的命中物。在“错过的命中物”区域发现了 IC50=309nM 的化合物,表明可以通过计算方法从 MS-SCL 中检索到活性化合物。本工作中提出的策略具有普遍性,被设想为一种通用方法,可应用于其他 MB-SCL。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验