In Silico Lead Discovery, Novartis Institutes for Biomedical Research Inc. , 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
J Chem Inf Model. 2013 Mar 25;53(3):692-703. doi: 10.1021/ci300607r. Epub 2013 Mar 5.
Virtual screening using bioactivity profiles has become an integral part of currently applied hit finding methods in pharmaceutical industry. However, a significant drawback of this approach is that it is only applicable to compounds that have been biologically tested in the past and have sufficient activity annotations for meaningful profile comparisons. Although bioactivity data generated in pharmaceutical institutions are growing on an unprecedented scale, the number of biologically annotated compounds still covers only a minuscule fraction of chemical space. For a newly synthesized compound or an isolated natural product to be biologically characterized across multiple assays, it may take a considerable amount of time. Consequently, this chemical matter will not be included in virtual screening campaigns based on bioactivity profiles. To overcome this problem, we herein introduce bioturbo similarity searching that uses chemical similarity to map molecules without biological annotations into bioactivity space and then searches for biologically similar compounds in this reference system. In benchmark calculations on primary screening data, we demonstrate that our approach generally achieves higher hit rates and identifies structurally more diverse compounds than approaches using chemical information only. Furthermore, our method is able to discover hits with novel modes of inhibition that traditional 2D and 3D similarity approaches are unlikely to discover. Test calculations on a set of natural products reveal the practical utility of the approach for identifying novel and synthetically more accessible chemical matter.
基于生物活性谱的虚拟筛选已经成为当前制药行业中发现命中化合物的常用方法之一。然而,这种方法的一个显著缺点是,它仅适用于过去已经经过生物测试且具有足够的活性注释以进行有意义的谱比较的化合物。尽管制药机构中生成的生物活性数据以前所未有的规模增长,但具有生物学注释的化合物数量仍然只覆盖了化学空间的一小部分。对于一个新合成的化合物或分离的天然产物,要在多个测定中进行生物学表征,可能需要相当长的时间。因此,这种化学物质不会包含在基于生物活性谱的虚拟筛选中。为了解决这个问题,我们在此引入了生物涡轮增压相似性搜索,该方法使用化学相似性将没有生物学注释的分子映射到生物活性空间中,然后在这个参考系统中搜索具有生物学相似性的化合物。在初步筛选数据的基准计算中,我们证明了我们的方法通常比仅使用化学信息的方法具有更高的命中率和识别出结构更具多样性的化合物。此外,我们的方法能够发现具有新颖抑制模式的命中化合物,而传统的 2D 和 3D 相似性方法不太可能发现这些化合物。对一组天然产物的测试计算表明了该方法在识别新颖和更具合成可及性的化学物质方面的实际应用。