Suppr超能文献

可靠性综合分析:正性负性情绪量表研究

Reliability generalization: an examination of the Positive Affect and Negative Affect Schedule.

机构信息

University of Hamburg, Faculty of Education, Psychology, and Human Movement, Von-Melle-Park 5, 20146 Hamburg, Germany.

出版信息

Assessment. 2011 Dec;18(4):487-501. doi: 10.1177/1073191110374917. Epub 2010 Sep 20.

Abstract

The assessment of positive affect (PA) and negative affect (NA) by means of the Positive Affect and Negative Affect Schedule has received a remarkable popularity in the social sciences. Using a meta-analytic tool-namely, reliability generalization (RG)-population reliability scores of both scales have been investigated on the basis of a random effects model in 147 studies. Correcting for measurement errors, the results demonstrate moderate to high internal consistency coefficients and variations of the PA and NA reliability scores with regard to time frame instructions, language of items, and sample characteristics. The percentage of PA and NA true score variance differs in subpopulations up to 11%. RG analysis of test-retest coefficients illustrates state-like fluctuations and trait-like stability of both scales. Calculations of the fail-safe number point at the robustness of the results. Applications of RG coefficients compared to single-study coefficients highlight the relevance of population coefficients for research and assessment situations.

摘要

采用正性情绪和负性情绪量表来评估正性情绪(PA)和负性情绪(NA)在社会科学领域得到了广泛应用。本研究基于随机效应模型,通过元分析工具——可靠性综合(RG),对这两个量表的群体可靠性分数进行了研究,共涉及 147 项研究。校正测量误差后,结果表明,PA 和 NA 的内部一致性系数中等偏高,且与时间框架指导语、项目语言和样本特征有关。PA 和 NA 真实分数方差在亚群中差异高达 11%。RG 分析表明,两个量表的重测系数具有状态样波动和特质样稳定的特点。失效安全数的计算表明了结果的稳健性。与单研究系数相比,RG 系数的应用突出了群体系数在研究和评估情境中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验