Medical Research Council Toxicology Unit, Systems Toxicology Group, Leicester, United Kingdom.
PLoS One. 2010 Sep 15;5(9):e12733. doi: 10.1371/journal.pone.0012733.
Doxorubicin is one of the most effective anti-cancer drugs but its use is limited by cumulative cardiotoxicity that restricts lifetime dose. Redox damage is one of the most accepted mechanisms of toxicity, but not fully substantiated. Moreover doxorubicin is not an efficient redox cycling compound due to its low redox potential. Here we used genomic and chemical systems approaches in vivo to investigate the mechanisms of doxorubicin cardiotoxicity, and specifically test the hypothesis of redox cycling mediated cardiotoxicity.
METHODOLOGY/PRINCIPAL FINDINGS: Mice were treated with an acute dose of either doxorubicin (DOX) (15 mg/kg) or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) (25 mg/kg). DMNQ is a more efficient redox cycling agent than DOX but unlike DOX has limited ability to inhibit gene transcription and DNA replication. This allowed specific testing of the redox hypothesis for cardiotoxicity. An acute dose was used to avoid pathophysiological effects in the genomic analysis. However similar data were obtained with a chronic model, but are not specifically presented. All data are deposited in the Gene Expression Omnibus (GEO). Pathway and biochemical analysis of cardiac global gene transcription and mRNA translation data derived at time points from 5 min after an acute exposure in vivo showed a pronounced effect on electron transport chain activity. This led to loss of ATP, increased AMPK expression, mitochondrial genome amplification and activation of caspase 3. No data gathered with either compound indicated general redox damage, though site specific redox damage in mitochondria cannot be entirely discounted.
CONCLUSIONS/SIGNIFICANCE: These data indicate the major mechanism of doxorubicin cardiotoxicity is via damage or inhibition of the electron transport chain and not general redox stress. There is a rapid response at transcriptional and translational level of many of the genes coding for proteins of the electron transport chain complexes. Still though ATP loss occurs with activation caspase 3 and these events probably account for the heart damage.
多柔比星是最有效的抗癌药物之一,但由于累积性心脏毒性限制了其使用剂量。氧化还原损伤是毒性的最被接受的机制之一,但尚未得到充分证实。此外,由于多柔比星的氧化还原电位较低,它不是一种有效的氧化还原循环化合物。在这里,我们使用基因组和化学系统方法在体内研究多柔比星心脏毒性的机制,并特别测试氧化还原循环介导的心脏毒性的假设。
方法/主要发现:用急性剂量的多柔比星(DOX)(15mg/kg)或 2,3-二甲氧基-1,4-萘醌(DMNQ)(25mg/kg)处理小鼠。DMNQ 是一种比 DOX 更有效的氧化还原循环试剂,但与 DOX 不同,它抑制基因转录和 DNA 复制的能力有限。这使得可以专门针对心脏毒性的氧化还原假说进行测试。使用急性剂量可避免基因组分析中的病理生理效应。但是,使用慢性模型也获得了类似的数据,但未具体呈现。所有数据均已存入基因表达综合数据库(GEO)。心脏全局基因转录和 mRNA 翻译数据的生化和通路分析,源自体内急性暴露后 5 分钟的时间点,显示对电子传递链活性有明显影响。这导致 ATP 损失、AMPK 表达增加、线粒体基因组扩增和 caspase 3 激活。两种化合物都没有显示出一般的氧化还原损伤,但不能完全排除线粒体中特定部位的氧化还原损伤。
结论/意义:这些数据表明,多柔比星心脏毒性的主要机制是通过电子传递链的损伤或抑制,而不是一般的氧化还原应激。许多编码电子传递链复合物蛋白的基因在转录和翻译水平上都有快速反应。尽管发生了 ATP 损失,caspase 3 被激活,但这些事件可能是心脏损伤的原因。