Suppr超能文献

生物勘探寻找最坚韧的生物材料:来自巨型河蜘蛛的非凡丝。

Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.

机构信息

Department of Biology, Faculty of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico.

出版信息

PLoS One. 2010 Sep 16;5(9):e11234. doi: 10.1371/journal.pone.0011234.

Abstract

BACKGROUND

Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41,000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200,000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila) or simply from researchers' backyards. Are we limited to 'blindly fishing' in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties?

METHODOLOGY

We examined the biomechanical properties of silk produced by the remarkable Malagasy 'Darwin's bark spider' (Caerostris darwini), which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m(2)) suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m(3), with some samples reaching 520 MJ/m(3). Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough.

CONCLUSIONS

Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web into the river. This hypothesis predicts that rapid change in material properties of silk co-occurred with ecological shifts within the genus, and can thus be tested by combining material science, behavioral observations, and phylogenetics. Our findings highlight the potential benefits of natural history-informed bioprospecting to discover silks, as well as other materials, with novel and exceptional properties to serve as models in biomimicry.

摘要

背景

蜘蛛丝兼具高强度和弹性,异常坚韧,即在断裂前能吸收大量动能。因此,蜘蛛丝是开发高性能仿生纤维的理想聚合物模型。目前已描述的蜘蛛种类超过 41,000 种,大多数蜘蛛会吐出多种类型的丝。这意味着我们拥有大约 20 万种以上的独特蜘蛛丝,其可能具有惊人的材料性能。然而,迄今为止,仅对少数几十种蜘蛛丝的特性进行了研究,其中大多数是随机选择的模式生物(Nephila)或只是来自研究人员的后院。我们是否只能在发现非凡蜘蛛丝的过程中“盲目捕捞”?或者,科学家是否可以利用生态学来预测哪些物种可能会吐出具有卓越性能特性的丝?

方法

我们研究了马达加斯加“达尔文树皮蜘蛛”(Caerostris darwini)所产丝的生物力学特性,我们根据其惊人的蛛网预测该蜘蛛会产生非凡的丝。这种蜘蛛在溪流、河流和湖泊上方悬空建造巨大的圆形蛛网。它通过长达 25 米的锚线将蛛网固定在两岸的基质上。Caerostris 蛛网的牵引丝和被强制拉出的丝都表现出了前所未有的高强度和弹性的非凡结合,其强力丝纤维的韧性平均值为 350 MJ/m³,有些样本达到 520 MJ/m³。因此,C. darwini 丝的韧性比任何先前描述的丝都要强两倍以上,比 Kevlar®强 10 倍以上。Caerostris 捕获螺旋丝同样异常坚韧。

结论

Caerostris darwini 产生了已知最坚韧的生物材料。我们假设这种非凡的韧性与这些蜘蛛不寻常的生态和蛛网结构共同进化,降低了桥线断裂和蛛网落入河流的可能性。这一假设预测,丝的材料特性的快速变化与属内的生态变化同时发生,因此可以通过结合材料科学、行为观察和系统发生学进行测试。我们的发现强调了以自然历史为指导的生物勘探发现具有新颖和卓越特性的丝以及其他材料的潜在好处,这些材料可以作为仿生学的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0278/2939878/55384104e594/pone.0011234.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验