Suppr超能文献

利用犹他州人口数据库评估原发性开角型青光眼的家族风险。

Using the Utah Population Database to assess familial risk of primary open angle glaucoma.

作者信息

Wang Xiaolei, Harmon Jennifer, Zabrieskie Norman, Chen Yuhong, Grob Seanna, Williams Brice, Lee Clara, Kasuga Daniel, Shaw Peter X, Buehler Jeanette, Wang Ningli, Zhang Kang

机构信息

Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

出版信息

Vision Res. 2010 Nov 23;50(23):2391-5. doi: 10.1016/j.visres.2010.09.018. Epub 2010 Sep 19.

Abstract

PURPOSE

Primary open angle glaucoma (POAG) is a leading cause of irreversible blindness in the elderly. Previous epidemiological studies have identified family history, ethnic origin, age, high intraocular pressure and diabetes mellitus as risk factors. However, it is difficult to assess the extent family history plays in this disease process. The Utah Population Database (UPDB), created by the University of Utah, has recently become a resource for which greater than 9 million records are available for use. The UPDB is divided into two major data sets from which family members can be identified, namely 1.6 million genealogy records and 2 million Utah birth certificates. This study utilizes these resources to assess the familial risk of POAG within the Utah Population.

METHODS

The University of Utah's hospital and clinic records were searched for patients with primary and chronic open angle glaucoma (ICD9 codes 365.04 and 365.11) between the years 1995 and 2005. A case-control analysis was then performed with specialized UPDB software that was modified to constrain the control and pedigree populations to over 1 million University of Utah-UPDB linked records. Controls were matched to cases by gender and birth year (±2.5years) with only one control being used per case. Population-attributable risk (PAR) to familial factors and relative risk (RR) were computed using conditional logistic regression (CLR).

RESULTS

From the original 1.5 million medical records, 6198 patients with glaucoma were identified. Of these, 3391 met the inclusion criteria, which required patients to have at least one parent or one child in the UPDB. The PAR in this population was found to be 0.20, indicating 20% of the risk for glaucoma is attributable to genetic factors. CLR computations also showed a significantly increased relative risk (p<0.05) in first cousins (RR=1.45 (95% confidence interval (CI) 1.16-1.8)), second cousins (RR=1.19 (95% CI 1.08-1.32)), siblings (RR=3.76 (95% CI 2.66-5.31)), parents (RR=6.25 (95% CI 3.94-9.9)) and children (RR=6.77 (95% CI 3.39-13.5)).

CONCLUSIONS

Based on these familial data, there is a significantly higher prevalence of glaucoma in both first and second generation relatives of those affected as compared to relatives in the control group. When compared with other epidemiologic studies, such as an analysis of first-degree relatives of patients from the Rotterdam study, which showed a PAR of 16%, our study actually demonstrates a greater familial contribution to glaucoma. The UPDB is a valuable and unique resource providing a large population from which to analyze the familial risk of glaucoma.

摘要

目的

原发性开角型青光眼(POAG)是老年人不可逆失明的主要原因。既往流行病学研究已确定家族史、种族、年龄、高眼压和糖尿病为风险因素。然而,难以评估家族史在该疾病进程中所起的作用程度。由犹他大学创建的犹他人口数据库(UPDB),近期已成为一个可利用记录超过900万条的资源库。UPDB分为两个主要数据集,据此可识别家庭成员,即160万份家谱记录和200万份犹他州出生证明。本研究利用这些资源评估犹他州人群中POAG的家族风险。

方法

检索犹他大学医院和诊所1995年至2005年间原发性和慢性开角型青光眼(国际疾病分类第九版代码365.04和365.11)患者的记录。然后使用专门的UPDB软件进行病例对照分析,该软件经过修改,将对照和家系人群限制在超过100万条与犹他大学-UPDB相关联的记录范围内。对照按性别和出生年份(±2.5岁)与病例匹配,每个病例仅使用一个对照。使用条件逻辑回归(CLR)计算家族因素的人群归因风险(PAR)和相对风险(RR)。

结果

从最初的150万份医疗记录中,识别出6198例青光眼患者。其中,3391例符合纳入标准,该标准要求患者在UPDB中有至少一位父母或一个孩子。该人群中的PAR为0.20,表明青光眼风险的20%可归因于遗传因素。CLR计算还显示,一级表亲(RR = 1.45(95%置信区间(CI)1.16 - 1.8))、二级表亲(RR = 1.19(95%CI 1.08 - 1.32))、兄弟姐妹(RR = 3.76(95%CI 2.66 - 5.31))、父母(RR = 6.25(95%CI 3.94 - 9.9))和子女(RR = 6.77(95%CI 3.39 - 13.5))的相对风险显著增加(p < 0.05)。

结论

基于这些家族数据,与对照组亲属相比,患者的第一代和第二代亲属中青光眼的患病率显著更高。与其他流行病学研究相比,如对鹿特丹研究中患者一级亲属的分析显示PAR为16%,我们的研究实际上表明家族因素对青光眼的影响更大。UPDB是一个有价值且独特的资源库,提供了大量人群用于分析青光眼的家族风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验