Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
J Neurophysiol. 2010 Dec;104(6):2940-50. doi: 10.1152/jn.00400.2010. Epub 2010 Sep 22.
Motion boundaries (local changes in visual motion direction) arise naturally when objects move relative to an observer. In human visual cortex, neuroimaging studies have identified a region (the kinetic occipital area [KO]) that responds more strongly to motion-boundary stimuli than to transparent-motion stimuli. However, some functional magnetic resonance imaging (fMRI) studies suggest that KO may encompass multiple visual areas and single-unit studies in macaque visual cortex have identified neurons selective for motion-boundary orientation in areas V2, V3, and V4, implying that motion-boundary selectivity may not be restricted to a single area. It is not known whether fMRI responses to motion boundaries are selective for motion-boundary orientation, as would be expected if these responses reflected the population activity of motion-boundary-selective neurons. We used an event-related fMRI adaptation protocol to measure orientation-selective responses to motion boundaries in human visual cortex. On each trial, we measured the response to a probe stimulus presented after an adapter stimulus (a vertical or horizontal motion-boundary grating). The probe stimulus was either a motion-boundary grating oriented parallel or orthogonal to the adapter stimulus or a transparent-motion stimulus. Orientation-selective adaptation for motion boundaries--smaller responses for trials in which test and adapter stimuli were parallel to each other--was observed in multiple extrastriate visual areas. The strongest adaptation, relative to the unadapted responses, was found in V3A, V3B, LO1, LO2, and V7. Most of the visual areas that exhibited orientation-selective adaptation in our data also showed response preference for motion boundaries over transparent motion, indicating that most of the human visual areas previously shown to respond to motion boundaries are also selective for motion-boundary orientation. These results suggest that neurons selective for motion-boundary orientation are distributed across multiple human visual cortical areas and argue against the existence of a single region or area specialized for motion-boundary processing.
当物体相对于观察者移动时,会自然产生运动边界(视觉运动方向的局部变化)。在人类视觉皮层中,神经影像学研究已经确定了一个区域(运动枕区[KO]),该区域对运动边界刺激的反应比对透明运动刺激的反应更强。然而,一些功能磁共振成像(fMRI)研究表明,KO 可能包含多个视觉区域,而在猕猴视觉皮层中的单细胞研究已经确定了对 V2、V3 和 V4 中的运动边界方向选择性的神经元,这意味着运动边界选择性可能不限于单个区域。目前尚不清楚 fMRI 对运动边界的反应是否对运动边界方向具有选择性,就像这些反应反映了运动边界选择性神经元的群体活动一样。我们使用事件相关 fMRI 适应协议来测量人类视觉皮层中运动边界的方向选择性反应。在每次试验中,我们测量了在适应刺激(垂直或水平运动边界光栅)之后呈现的探针刺激的反应。探针刺激是与适配器刺激平行或正交的运动边界光栅或透明运动刺激。在多个外纹状视觉区域中观察到了对运动边界的方向选择性适应,即测试和适配器刺激彼此平行时的反应较小。与未适应的反应相比,在 V3A、V3B、LO1、LO2 和 V7 中观察到最强的适应。在我们的数据中,表现出方向选择性适应的大多数视觉区域也表现出对运动边界的反应偏好超过透明运动,这表明大多数以前显示对运动边界有反应的人类视觉区域也对运动边界方向具有选择性。这些结果表明,对运动边界方向具有选择性的神经元分布在多个人类视觉皮层区域中,并且反对存在专门用于运动边界处理的单个区域或区域。