Suppr超能文献

人类视觉皮层中运动边界响应的方位选择性。

Orientation selectivity of motion-boundary responses in human visual cortex.

机构信息

Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.

出版信息

J Neurophysiol. 2010 Dec;104(6):2940-50. doi: 10.1152/jn.00400.2010. Epub 2010 Sep 22.

Abstract

Motion boundaries (local changes in visual motion direction) arise naturally when objects move relative to an observer. In human visual cortex, neuroimaging studies have identified a region (the kinetic occipital area [KO]) that responds more strongly to motion-boundary stimuli than to transparent-motion stimuli. However, some functional magnetic resonance imaging (fMRI) studies suggest that KO may encompass multiple visual areas and single-unit studies in macaque visual cortex have identified neurons selective for motion-boundary orientation in areas V2, V3, and V4, implying that motion-boundary selectivity may not be restricted to a single area. It is not known whether fMRI responses to motion boundaries are selective for motion-boundary orientation, as would be expected if these responses reflected the population activity of motion-boundary-selective neurons. We used an event-related fMRI adaptation protocol to measure orientation-selective responses to motion boundaries in human visual cortex. On each trial, we measured the response to a probe stimulus presented after an adapter stimulus (a vertical or horizontal motion-boundary grating). The probe stimulus was either a motion-boundary grating oriented parallel or orthogonal to the adapter stimulus or a transparent-motion stimulus. Orientation-selective adaptation for motion boundaries--smaller responses for trials in which test and adapter stimuli were parallel to each other--was observed in multiple extrastriate visual areas. The strongest adaptation, relative to the unadapted responses, was found in V3A, V3B, LO1, LO2, and V7. Most of the visual areas that exhibited orientation-selective adaptation in our data also showed response preference for motion boundaries over transparent motion, indicating that most of the human visual areas previously shown to respond to motion boundaries are also selective for motion-boundary orientation. These results suggest that neurons selective for motion-boundary orientation are distributed across multiple human visual cortical areas and argue against the existence of a single region or area specialized for motion-boundary processing.

摘要

当物体相对于观察者移动时,会自然产生运动边界(视觉运动方向的局部变化)。在人类视觉皮层中,神经影像学研究已经确定了一个区域(运动枕区[KO]),该区域对运动边界刺激的反应比对透明运动刺激的反应更强。然而,一些功能磁共振成像(fMRI)研究表明,KO 可能包含多个视觉区域,而在猕猴视觉皮层中的单细胞研究已经确定了对 V2、V3 和 V4 中的运动边界方向选择性的神经元,这意味着运动边界选择性可能不限于单个区域。目前尚不清楚 fMRI 对运动边界的反应是否对运动边界方向具有选择性,就像这些反应反映了运动边界选择性神经元的群体活动一样。我们使用事件相关 fMRI 适应协议来测量人类视觉皮层中运动边界的方向选择性反应。在每次试验中,我们测量了在适应刺激(垂直或水平运动边界光栅)之后呈现的探针刺激的反应。探针刺激是与适配器刺激平行或正交的运动边界光栅或透明运动刺激。在多个外纹状视觉区域中观察到了对运动边界的方向选择性适应,即测试和适配器刺激彼此平行时的反应较小。与未适应的反应相比,在 V3A、V3B、LO1、LO2 和 V7 中观察到最强的适应。在我们的数据中,表现出方向选择性适应的大多数视觉区域也表现出对运动边界的反应偏好超过透明运动,这表明大多数以前显示对运动边界有反应的人类视觉区域也对运动边界方向具有选择性。这些结果表明,对运动边界方向具有选择性的神经元分布在多个人类视觉皮层区域中,并且反对存在专门用于运动边界处理的单个区域或区域。

相似文献

1
Orientation selectivity of motion-boundary responses in human visual cortex.
J Neurophysiol. 2010 Dec;104(6):2940-50. doi: 10.1152/jn.00400.2010. Epub 2010 Sep 22.
2
Orientation-selective adaptation to first- and second-order patterns in human visual cortex.
J Neurophysiol. 2006 Feb;95(2):862-81. doi: 10.1152/jn.00668.2005. Epub 2005 Oct 12.
3
Human cortical areas underlying the perception of optic flow: brain imaging studies.
Int Rev Neurobiol. 2000;44:269-92. doi: 10.1016/s0074-7742(08)60746-1.
4
Orientation-selective adaptation to illusory contours in human visual cortex.
J Neurosci. 2007 Feb 28;27(9):2186-95. doi: 10.1523/JNEUROSCI.4173-06.2007.
5
Processing of kinetically defined boundaries in areas V1 and V2 of the macaque monkey.
J Neurophysiol. 2000 Dec;84(6):2786-98. doi: 10.1152/jn.2000.84.6.2786.
7
Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey.
J Neurophysiol. 1995 Sep;74(3):1258-70. doi: 10.1152/jn.1995.74.3.1258.
8
Two retinotopic visual areas in human lateral occipital cortex.
J Neurosci. 2006 Dec 20;26(51):13128-42. doi: 10.1523/JNEUROSCI.1657-06.2006.
9
Processing of motion boundary orientation in macaque V2.
Elife. 2021 Mar 24;10:e61317. doi: 10.7554/eLife.61317.
10
Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.
J Neurosci. 2015 Jul 15;35(28):10268-80. doi: 10.1523/JNEUROSCI.1418-11.2015.

引用本文的文献

1
Cortical field maps across human sensory cortex.
Front Comput Neurosci. 2023 Dec 15;17:1232005. doi: 10.3389/fncom.2023.1232005. eCollection 2023.
2
Independent repetition suppression in macaque area V2 and inferotemporal cortex.
J Neurophysiol. 2022 Dec 1;128(6):1421-1434. doi: 10.1152/jn.00043.2022. Epub 2022 Nov 9.
3
Object Boundary Detection in Natural Images May Depend on "Incitatory" Cell-Cell Interactions.
J Neurosci. 2022 Nov 30;42(48):8960-8979. doi: 10.1523/JNEUROSCI.2581-18.2022. Epub 2022 Oct 14.
5
Population receptive field estimates for motion-defined stimuli.
Neuroimage. 2019 Oct 1;199:245-260. doi: 10.1016/j.neuroimage.2019.05.068. Epub 2019 May 31.
6
Look but don't touch: Visual cues to surface structure drive somatosensory cortex.
Neuroimage. 2016 Mar;128:353-361. doi: 10.1016/j.neuroimage.2015.12.054. Epub 2016 Jan 9.
7
fMRI adaptation revisited.
Cortex. 2016 Jul;80:154-60. doi: 10.1016/j.cortex.2015.10.026. Epub 2015 Nov 17.
8
Breaking cover: neural responses to slow and fast camouflage-breaking motion.
Proc Biol Sci. 2015 Aug 22;282(1813):20151182. doi: 10.1098/rspb.2015.1182.
9
Spatial specificity and inheritance of adaptation in human visual cortex.
J Neurophysiol. 2015 Aug;114(2):1211-26. doi: 10.1152/jn.00167.2015. Epub 2015 Jun 10.
10
Motion direction biases and decoding in human visual cortex.
J Neurosci. 2014 Sep 10;34(37):12601-15. doi: 10.1523/JNEUROSCI.1034-14.2014.

本文引用的文献

1
Visual field map clusters in macaque extrastriate visual cortex.
J Neurosci. 2009 May 27;29(21):7031-9. doi: 10.1523/JNEUROSCI.0518-09.2009.
3
fMRI measurements of color in macaque and human.
J Vis. 2008 Sep 22;8(10):6.1-19. doi: 10.1167/8.10.6.
4
Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex.
J Neurophysiol. 2008 Mar;99(3):1380-93. doi: 10.1152/jn.01223.2007. Epub 2008 Jan 2.
5
Topographic organization in and near human visual area V4.
J Neurosci. 2007 Oct 31;27(44):11896-911. doi: 10.1523/JNEUROSCI.2991-07.2007.
6
Visual field maps in human cortex.
Neuron. 2007 Oct 25;56(2):366-83. doi: 10.1016/j.neuron.2007.10.012.
7
Shape selectivity for camouflage-breaking dynamic stimuli in dorsal V4 neurons.
Cereb Cortex. 2008 Jun;18(6):1429-43. doi: 10.1093/cercor/bhm176. Epub 2007 Oct 12.
8
Orientation-selective adaptation to illusory contours in human visual cortex.
J Neurosci. 2007 Feb 28;27(9):2186-95. doi: 10.1523/JNEUROSCI.4173-06.2007.
9
Two retinotopic visual areas in human lateral occipital cortex.
J Neurosci. 2006 Dec 20;26(51):13128-42. doi: 10.1523/JNEUROSCI.1657-06.2006.
10
Second-order spatial frequency and orientation channels in human vision.
Vision Res. 2006 Sep;46(17):2798-803. doi: 10.1016/j.visres.2006.01.028. Epub 2006 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验