Suppr超能文献

猕猴纹外视觉皮层中的视野图簇

Visual field map clusters in macaque extrastriate visual cortex.

作者信息

Kolster Hauke, Mandeville Joseph B, Arsenault John T, Ekstrom Leeland B, Wald Lawrence L, Vanduffel Wim

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.

出版信息

J Neurosci. 2009 May 27;29(21):7031-9. doi: 10.1523/JNEUROSCI.0518-09.2009.

Abstract

The macaque visual cortex contains >30 different functional visual areas, yet surprisingly little is known about the underlying organizational principles that structure its components into a complete "visual" unit. A recent model of visual cortical organization in humans suggests that visual field maps are organized as clusters. Clusters minimize axonal connections between individual field maps that represent common visual percepts, with different clusters thought to carry out different functions. Experimental support for this hypothesis, however, is lacking in macaques, leaving open the question of whether it is unique to humans or a more general model for primate vision. Here we show, using high-resolution blood oxygen level-dependent functional magnetic resonance imaging data in the awake monkey at 7 T, that the middle temporal area (area MT/V5) and its neighbors are organized as a cluster with a common foveal representation and a circular eccentricity map. This novel view on the functional topography of area MT/V5 and satellites indicates that field map clusters are evolutionarily preserved and may be a fundamental organizational principle of the Old World primate visual cortex.

摘要

猕猴视觉皮层包含30多个不同的功能性视觉区域,但令人惊讶的是,对于将其组成部分构建成一个完整“视觉”单元的潜在组织原则却知之甚少。最近一个关于人类视觉皮层组织的模型表明,视野图是按簇状组织的。簇状结构使代表共同视觉感知的各个视野图之间的轴突连接最小化,不同的簇被认为执行不同的功能。然而,在猕猴中缺乏对这一假设的实验支持,这使得它是人类独有的还是灵长类视觉更普遍的模型这一问题悬而未决。在这里,我们使用7T清醒猴子的高分辨率血氧水平依赖性功能磁共振成像数据表明,颞中区(MT/V5区)及其相邻区域被组织成一个具有共同中央凹表征和圆形离心率图的簇。这种关于MT/V5区及其附属区域功能地形图的新观点表明,视野图簇在进化上是保守的,可能是旧世界灵长类动物视觉皮层的一个基本组织原则。

相似文献

1
Visual field map clusters in macaque extrastriate visual cortex.
J Neurosci. 2009 May 27;29(21):7031-9. doi: 10.1523/JNEUROSCI.0518-09.2009.
3
The Anatomical and Functional Organization of the Human Visual Pulvinar.
J Neurosci. 2015 Jul 8;35(27):9848-71. doi: 10.1523/JNEUROSCI.1575-14.2015.
4
Retinotopy versus face selectivity in macaque visual cortex.
J Cogn Neurosci. 2014 Dec;26(12):2691-700. doi: 10.1162/jocn_a_00672. Epub 2014 Jun 4.
5
The foveal confluence in human visual cortex.
J Neurosci. 2009 Jul 15;29(28):9050-8. doi: 10.1523/JNEUROSCI.1760-09.2009.
6
Retinotopic organization of human ventral visual cortex.
J Neurosci. 2009 Aug 26;29(34):10638-52. doi: 10.1523/JNEUROSCI.2807-09.2009.
7
Selectivity for speed gradients in human area MT/V5.
Neuroreport. 2005 Apr 4;16(5):435-8. doi: 10.1097/00001756-200504040-00004.
8
Two-dimensional mapping of the central and parafoveal visual field to human visual cortex.
J Neurophysiol. 2007 Jun;97(6):4284-95. doi: 10.1152/jn.00972.2006. Epub 2007 Mar 14.
9
The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors.
J Neurosci. 2010 Jul 21;30(29):9801-20. doi: 10.1523/JNEUROSCI.2069-10.2010.
10
Feedback of visual object information to foveal retinotopic cortex.
Nat Neurosci. 2008 Dec;11(12):1439-45. doi: 10.1038/nn.2218. Epub 2008 Nov 2.

引用本文的文献

1
2
High-resolution fMRI reveals a dorsal brain pathway selective for conspecific vocalizations in macaques.
Imaging Neurosci (Camb). 2025 Aug 13;3. doi: 10.1162/IMAG.a.108. eCollection 2025.
3
Functional Localization of Visual Motion Area FST in Humans.
Imaging Neurosci (Camb). 2025;3. doi: 10.1162/imag_a_00578. Epub 2025 May 16.
4
Shared and Unique Neural Codes for Biological Motion Perception in Humans and Macaque Monkeys.
Adv Sci (Weinh). 2025 May;12(18):e2411562. doi: 10.1002/advs.202411562. Epub 2025 Mar 16.
5
Connectional differences between humans and macaques in the MT+ complex.
iScience. 2024 Dec 17;28(1):111617. doi: 10.1016/j.isci.2024.111617. eCollection 2025 Jan 17.
6
Expansion of a conserved architecture drives the evolution of the primate visual cortex.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2421585122. doi: 10.1073/pnas.2421585122. Epub 2025 Jan 13.
7
Multiple loci for foveolar vision in macaque monkey visual cortex.
Nat Neurosci. 2025 Jan;28(1):137-149. doi: 10.1038/s41593-024-01810-4. Epub 2024 Dec 5.
8
Functional localization of visual motion area FST in humans.
bioRxiv. 2024 Sep 20:2024.09.19.614014. doi: 10.1101/2024.09.19.614014.
9
Dynamic off-resonance correction improves functional image analysis in fMRI of awake behaving non-human primates.
Front Neuroimaging. 2024 Jun 25;3:1336887. doi: 10.3389/fnimg.2024.1336887. eCollection 2024.
10
Topographic organization across foveal visual areas in macaques.
Front Neuroanat. 2024 Apr 29;18:1389067. doi: 10.3389/fnana.2024.1389067. eCollection 2024.

本文引用的文献

1
Bottom-up dependent gating of frontal signals in early visual cortex.
Science. 2008 Jul 18;321(5887):414-7. doi: 10.1126/science.1153276.
2
Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
Cereb Cortex. 2008 Sep;18(9):2158-68. doi: 10.1093/cercor/bhm242. Epub 2008 Jan 29.
3
fMRI of the temporal lobe of the awake monkey at 7 T.
Neuroimage. 2008 Feb 1;39(3):1081-93. doi: 10.1016/j.neuroimage.2007.09.038. Epub 2007 Sep 29.
4
Population receptive field estimates in human visual cortex.
Neuroimage. 2008 Jan 15;39(2):647-60. doi: 10.1016/j.neuroimage.2007.09.034. Epub 2007 Sep 29.
5
Visual field maps in human cortex.
Neuron. 2007 Oct 25;56(2):366-83. doi: 10.1016/j.neuron.2007.10.012.
6
Two retinotopic visual areas in human lateral occipital cortex.
J Neurosci. 2006 Dec 20;26(51):13128-42. doi: 10.1523/JNEUROSCI.1657-06.2006.
7
Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus.
J Neurosci. 2006 May 31;26(22):5929-47. doi: 10.1523/JNEUROSCI.0824-06.2006.
8
Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque.
Neuron. 2005 Dec 22;48(6):901-11. doi: 10.1016/j.neuron.2005.11.034.
9
Characterization of event-related designs using BOLD and IRON fMRI.
Neuroimage. 2006 Feb 1;29(3):901-9. doi: 10.1016/j.neuroimage.2005.08.022. Epub 2005 Oct 5.
10
Visual field maps and stimulus selectivity in human ventral occipital cortex.
Nat Neurosci. 2005 Aug;8(8):1102-9. doi: 10.1038/nn1507. Epub 2005 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验