Suppr超能文献

用于全光神经网络的反向输入叠加技术

Reversal-input superposing technique for all-optical neural networks.

作者信息

Hayasaki Y, Tohyama I, Yatagai T, Mori M, Ishihara S

出版信息

Appl Opt. 1994 Mar 10;33(8):1477-84. doi: 10.1364/AO.33.001477.

Abstract

The proposed technique for optical neural networks can perform all the neural operations in a positive range. Bipolar weights of the neurons are represented by unipolar weights with a positive constant. By superposing the reversal inputs to the weighted sums, we can perform subtraction in a neuron by the nonlinear output function with a negative offset constant. This means that the number of processing elements needed in the proposed system is the same as that of neurons in the original neural network model. An experimental neural system is demonstrated for verification of this technique. The Hopfield model is adapted as an example of the neural networks implemented in the experimental neural system.

摘要

所提出的用于光学神经网络的技术可以在正范围内执行所有神经运算。神经元的双极权重由具有正常数的单极权重表示。通过将反向输入叠加到加权和上,我们可以通过具有负偏移常数的非线性输出函数在神经元中执行减法。这意味着所提出的系统中所需的处理元件数量与原始神经网络模型中的神经元数量相同。为验证该技术展示了一个实验性神经系统。以Hopfield模型为例,在实验性神经系统中实现神经网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验