Suppr超能文献

异构分布式系统中基于遗传算法的多启发式动态任务分配

Multi-heuristic dynamic task allocation using genetic algorithms in a heterogeneous distributed system.

作者信息

Page Andrew J, Keane Thomas M, Naughton Thomas J

机构信息

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK.

出版信息

J Parallel Distrib Comput. 2010 Jul;70(7):758-766. doi: 10.1016/j.jpdc.2010.03.011.

Abstract

We present a multi-heuristic evolutionary task allocation algorithm to dynamically map tasks to processors in a heterogeneous distributed system. It utilizes a genetic algorithm, combined with eight common heuristics, in an effort to minimize the total execution time. It operates on batches of unmapped tasks and can preemptively remap tasks to processors. The algorithm has been implemented on a Java distributed system and evaluated with a set of six problems from the areas of bioinformatics, biomedical engineering, computer science and cryptography. Experiments using up to 150 heterogeneous processors show that the algorithm achieves better efficiency than other state-of-the-art heuristic algorithms.

摘要

我们提出了一种多启发式进化任务分配算法,用于在异构分布式系统中将任务动态映射到处理器。它利用遗传算法,并结合八种常见启发式方法,以尽量减少总执行时间。该算法对一批未映射的任务进行操作,并且可以抢先将任务重新映射到处理器。该算法已在Java分布式系统上实现,并使用来自生物信息学、生物医学工程、计算机科学和密码学领域的一组六个问题进行了评估。使用多达150个异构处理器的实验表明,该算法比其他现有最先进的启发式算法具有更高的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f86/2927021/51ccb04e60ad/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验