Suppr超能文献

人类野生型 GluK2 和 M867I 突变型 kainate 受体的通道开放动力学机制。

Channel-opening kinetic mechanism for human wild-type GluK2 and the M867I mutant kainate receptor.

机构信息

Department of Chemistry and Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA.

出版信息

Biochemistry. 2010 Nov 2;49(43):9207-16. doi: 10.1021/bi100819v.

Abstract

GluK2 is a kainate receptor subunit that is alternatively spliced at the C-terminus. Previous studies implicated GluK2 in autism. In particular, the methionine-to-isoleucine replacement at amino acid residue 867 (M867I) that can only occur in the longest isoform of the human GluK2 (hGluK2), as the disease (autism) mutation, is thought to cause gain-of-function. However, the kinetic properties of the wild-type hGluK2 and the functional consequence of this gain-of-function mutation at the molecular level are not well understood. To investigate whether the M867I mutation affects the channel properties of the human GluK2 kainate receptor, we have systematically characterized the rate and the equilibrium constants pertinent to channel opening and channel desensitization for this mutant and the wild-type hGluK2 receptor, along with the wild-type rat GluK2 kainate receptor (rGluK2) as the control. Our results show that the M867I mutation does not affect either the rate or the equilibrium constants of the channel opening but does slow down the channel desensitization rate by ~1.6-fold at saturating glutamate concentrations. It is possible that a consequence of this mutation on the desensitization rate is linked to facilitating the receptor trafficking and membrane expression, given the close proximity of M867 to the forward trafficking motif in the C-terminal sequence. By comparing the kinetic data of the wild-type human and rat GluK2 receptors, we also find that the human GluK2 has a ~3-fold smaller channel-opening rate constant but an identical channel-closing rate constant and thus a channel-opening probability of 0.85 vs 0.96 for rGluK2. Furthermore, the intrinsic equilibrium dissociation constant K(1) for hGluK2, like the EC(50) value, is ~2-fold lower than rGluK2. Our results therefore suggest that the human GluK2 is relatively a slowly activating channel but more sensitive to glutamate, as compared to the rat ortholog, despite the fact that the human and rat forms share 99% sequence homology.

摘要

GluK2 是一种代谢型谷氨酸受体亚基,其 C 末端存在可变剪接。先前的研究表明 GluK2 与自闭症有关。特别是,只有在人类 GluK2(hGluK2)的最长异构体中才能发生的氨基酸残基 867 处的蛋氨酸到异亮氨酸替换(M867I),作为疾病(自闭症)突变,被认为会导致功能获得。然而,野生型 hGluK2 的动力学特性以及这种功能获得突变在分子水平上的功能后果尚不清楚。为了研究 M867I 突变是否影响人类 GluK2 型谷氨酸受体的通道特性,我们系统地描述了该突变体和野生型 hGluK2 受体以及野生型大鼠 GluK2 型谷氨酸受体(rGluK2)的通道开放和通道脱敏的速率和平衡常数,作为对照。我们的结果表明,M867I 突变既不影响通道开放的速率,也不影响通道开放的平衡常数,但在饱和谷氨酸浓度下,通道脱敏速率减慢了约 1.6 倍。由于 M867 靠近 C 末端序列中的正向转运基序,这种突变对脱敏速率的影响可能与促进受体转运和膜表达有关。通过比较野生型人和大鼠 GluK2 受体的动力学数据,我们还发现,人类 GluK2 的通道开放速率常数小约 3 倍,但通道关闭速率常数相同,因此通道开放概率为 0.85,而 rGluK2 为 0.96。此外,hGluK2 的内在平衡解离常数 K1 与 EC50 值一样,比 rGluK2 低约 2 倍。因此,我们的结果表明,与大鼠同源物相比,人类 GluK2 是一种相对缓慢激活的通道,但对谷氨酸更敏感,尽管人类和大鼠形式共享 99%的序列同源性。

相似文献

2
Channel-opening kinetic mechanism of wild-type GluK1 kainate receptors and a C-terminal mutant.
Biochemistry. 2012 Jan 24;51(3):761-8. doi: 10.1021/bi201446z. Epub 2012 Jan 9.
3
Neto proteins regulate gating of the kainate-type glutamate receptor GluK2 through two binding sites.
J Biol Chem. 2019 Nov 22;294(47):17889-17902. doi: 10.1074/jbc.RA119.008631. Epub 2019 Oct 18.
4
Distinct functional roles of subunits within the heteromeric kainate receptor.
J Neurosci. 2011 Nov 23;31(47):17113-22. doi: 10.1523/JNEUROSCI.3685-11.2011.
5
Subunit-specific desensitization of heteromeric kainate receptors.
J Physiol. 2010 Feb 15;588(Pt 4):683-700. doi: 10.1113/jphysiol.2009.185207. Epub 2009 Dec 21.
6
Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors.
Neuroscience. 2014 Oct 10;278:70-80. doi: 10.1016/j.neuroscience.2014.08.009. Epub 2014 Aug 17.
8
Correlating efficacy and desensitization with GluK2 ligand-binding domain movements.
Open Biol. 2013 May 29;3(5):130051. doi: 10.1098/rsob.130051.
9
Kainate receptor channel opening and gating mechanism.
Nature. 2024 Jun;630(8017):762-768. doi: 10.1038/s41586-024-07475-0. Epub 2024 May 22.
10
Agonist binding to the GluK5 subunit is sufficient for functional surface expression of heteromeric GluK2/GluK5 kainate receptors.
Cell Mol Neurobiol. 2013 Nov;33(8):1099-108. doi: 10.1007/s10571-013-9976-x. Epub 2013 Aug 23.

引用本文的文献

1
Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels.
Pharmacol Rev. 2021 Oct;73(4):298-487. doi: 10.1124/pharmrev.120.000131.
2
Stargazin and γ4 slow the channel opening and closing rates of GluA4 AMPA receptors.
Sci Rep. 2019 Jul 2;9(1):9570. doi: 10.1038/s41598-019-45870-0.
3
Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy.
Sci Rep. 2018 Jan 30;8(1):1898. doi: 10.1038/s41598-018-20287-3.
5
A gain-of-function mutation in the gene causes neurodevelopmental deficits.
Neurol Genet. 2017 Jan 31;3(1):e129. doi: 10.1212/NXG.0000000000000129. eCollection 2017 Feb.
6
Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases.
Mol Pharmacol. 2015 Jul;88(1):203-17. doi: 10.1124/mol.115.097998. Epub 2015 Apr 22.
8
Channel-opening kinetic mechanism of wild-type GluK1 kainate receptors and a C-terminal mutant.
Biochemistry. 2012 Jan 24;51(3):761-8. doi: 10.1021/bi201446z. Epub 2012 Jan 9.

本文引用的文献

1
X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor.
Nature. 2009 Dec 10;462(7274):745-56. doi: 10.1038/nature08624.
2
Differential regulation of kainate receptor trafficking by phosphorylation of distinct sites on GluR6.
J Biol Chem. 2010 Jan 22;285(4):2847-56. doi: 10.1074/jbc.M109.081141. Epub 2009 Nov 17.
3
Flip and flop: a molecular determinant for AMPA receptor channel opening.
Biochemistry. 2009 May 5;48(17):3767-77. doi: 10.1021/bi8015907.
4
Targeting AMPA and kainate receptors in neurological disease: therapies on the horizon?
Neuropsychopharmacology. 2009 Jan;34(1):249-50. doi: 10.1038/npp.2008.158.
5
Kainate receptors: pharmacology, function and therapeutic potential.
Neuropharmacology. 2009 Jan;56(1):90-113. doi: 10.1016/j.neuropharm.2008.08.023. Epub 2008 Aug 28.
6
Kainate receptors in epilepsy and excitotoxicity.
Neuroscience. 2009 Jan 12;158(1):309-23. doi: 10.1016/j.neuroscience.2008.02.066. Epub 2008 Mar 8.
7
Human GluR6c, a functional splicing variants of GluR6, is mainly expressed in non-nervous cells.
Neurosci Lett. 2008 Mar 21;434(1):77-82. doi: 10.1016/j.neulet.2008.01.049. Epub 2008 Feb 2.
8
The neurobiology of autism.
Brain Pathol. 2007 Oct;17(4):434-47. doi: 10.1111/j.1750-3639.2007.00102.x.
9
Critical roles for the M3-S2 transduction linker domain in kainate receptor assembly and postassembly trafficking.
J Neurosci. 2007 Sep 26;27(39):10423-33. doi: 10.1523/JNEUROSCI.2674-07.2007.
10
Receptor occupancy and channel-opening kinetics: a study of GLUR1 L497Y AMPA receptor.
J Biol Chem. 2007 Aug 3;282(31):22731-6. doi: 10.1074/jbc.M611821200. Epub 2007 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验