Suppr超能文献

剪切力培养对超声破坏血管内皮细胞过程中细胞膜通透性和细胞内钙离子浓度的影响。

Effects of shear stress cultivation on cell membrane disruption and intracellular calcium concentration in sonoporation of endothelial cells.

机构信息

Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA.

出版信息

J Biomech. 2011 Jan 4;44(1):164-9. doi: 10.1016/j.jbiomech.2010.09.003. Epub 2010 Sep 21.

Abstract

Microbubble facilitated ultrasound (US) application can enhance intracellular delivery of drugs and genes in endothelial cells cultured in static condition by transiently disrupting the cell membrane, or sonoporation. However, endothelial cells in vivo that are constantly exposed to blood flow may exhibit different sonoporation characteristics. This study investigates the effects of shear stress cultivation on sonoporation of endothelial cells in terms of membrane disruption and changes in the intracellular calcium concentration (Ca(2+)). Sonoporation experiments were conducted using murine brain microvascular endothelial (bEnd.3) cells and human umbilical vein endothelial cells (HUVECs) cultured under static or shear stress (5 dyne/cm(2) for 5 days) condition in a microchannel environment. The cells were exposed to a short US tone burst (1.25 MHz, 8 μs duration, 0.24 MPa) in the presence of Definity™ microbubbles to facilitate sonoporation. Membrane disruption was assessed by propidium iodide (PI) and changes in Ca(2+) measured by fura-2AM. Results from this study show that shear stress cultivation significantly reduced the impact of ultrasound-driven microbubbles activities on endothelial cells. Cells cultured under shear stress condition exhibited much lower percentage with membrane disruption and changes in Ca(2+) compared to statically cultured cells. The maximum increases of PI uptake and Ca(2+) were also significantly lower in the shear stress cultured cells. In addition, the extent of Ca(2+) waves in shear cultured HUVECs was reduced compared to the statically cultured cells.

摘要

微泡辅助超声(US)应用可以通过瞬时破坏细胞膜(即超声致孔),增强在静态条件下培养的内皮细胞内药物和基因的传递。然而,体内不断受到血流影响的内皮细胞可能表现出不同的超声致孔特征。本研究从细胞膜破坏和细胞内钙离子浓度变化(Ca(2+))两个方面,研究了剪切力培养对内皮细胞超声致孔的影响。在微通道环境中,使用培养在静态或剪切力(5 天内 5 达因/平方厘米)条件下的鼠脑微血管内皮(bEnd.3)细胞和人脐静脉内皮细胞(HUVEC)进行超声致孔实验。在存在 DefinityTM微泡的情况下,细胞接受短的超声声脉冲(1.25 MHz,8 μs 持续时间,0.24 MPa)以促进超声致孔。通过碘化丙啶(PI)评估细胞膜破坏,通过 fura-2AM 测量Ca(2+)的变化。本研究结果表明,剪切力培养显著降低了超声驱动微泡对内皮细胞的影响。与静态培养的细胞相比,剪切力培养的细胞显示出更低的细胞膜破坏和Ca(2+)变化百分比。剪切力培养的细胞中 PI 摄取和Ca(2+)的最大增加也明显较低。此外,与静态培养的细胞相比,剪切培养的 HUVEC 中的Ca(2+)波的幅度也降低了。

相似文献

2
Modulation of intracellular Ca2+ concentration in brain microvascular endothelial cells in vitro by acoustic cavitation.
Ultrasound Med Biol. 2010 Jul;36(7):1176-87. doi: 10.1016/j.ultrasmedbio.2010.04.006.
3
Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles.
J Control Release. 2010 Feb 25;142(1):31-9. doi: 10.1016/j.jconrel.2009.09.031. Epub 2009 Oct 7.
4
Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation.
J Control Release. 2006 May 15;112(2):149-55. doi: 10.1016/j.jconrel.2006.02.007. Epub 2006 Mar 6.
5
Spatiotemporal effects of sonoporation measured by real-time calcium imaging.
Ultrasound Med Biol. 2009 Mar;35(3):494-506. doi: 10.1016/j.ultrasmedbio.2008.09.003. Epub 2008 Nov 17.
6
Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow.
Ultrasound Med Biol. 2015 Sep;41(9):2435-48. doi: 10.1016/j.ultrasmedbio.2015.05.003. Epub 2015 Jun 9.
8
Fluid flow influences ultrasound-assisted endothelial membrane permeabilization and calcium flux.
J Control Release. 2023 Jun;358:333-344. doi: 10.1016/j.jconrel.2023.05.004. Epub 2023 May 10.
9
Faster calcium recovery and membrane resealing in repeated sonoporation for delivery improvement.
J Control Release. 2022 Dec;352:385-398. doi: 10.1016/j.jconrel.2022.10.027. Epub 2022 Oct 29.
10
Mechanistic Insight into Sonoporation with Ultrasound-Stimulated Polymer Microbubbles.
Ultrasound Med Biol. 2017 Nov;43(11):2678-2689. doi: 10.1016/j.ultrasmedbio.2017.07.017. Epub 2017 Aug 25.

引用本文的文献

1
Focused ultrasound in modern medicine: bioengineering interfaces, molecular effects, and clinical breakthroughs.
Front Bioeng Biotechnol. 2025 Aug 29;13:1610846. doi: 10.3389/fbioe.2025.1610846. eCollection 2025.
2
Friction in soft biological systems and surface self-organization: the role of viscoelasticity.
Biophys Rev. 2024 Oct 28;16(6):813-829. doi: 10.1007/s12551-024-01248-9. eCollection 2024 Dec.
3
Immunomodulation of human T cells by microbubble-mediated focused ultrasound.
Front Immunol. 2024 Oct 22;15:1486744. doi: 10.3389/fimmu.2024.1486744. eCollection 2024.
4
Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation.
Int J Mol Sci. 2022 Sep 23;23(19):11222. doi: 10.3390/ijms231911222.
5
Efficacy optimization of low frequency microbubble-mediated sonoporation as a drug delivery platform to cancer cells.
Int J Pharm X. 2022 Sep 22;4:100132. doi: 10.1016/j.ijpx.2022.100132. eCollection 2022 Dec.
6
Ultrasonic Microbubble Cavitation Enhanced Tissue Permeability and Drug Diffusion in Solid Tumor Therapy.
Pharmaceutics. 2022 Aug 6;14(8):1642. doi: 10.3390/pharmaceutics14081642.
9
Theranostic Microbubbles with Homogeneous Ligand Distribution for Higher Binding Efficacy.
Pharmaceutics. 2022 Jan 28;14(2):311. doi: 10.3390/pharmaceutics14020311.
10
Mechanically Induced Cavitation in Biological Systems.
Life (Basel). 2021 Jun 10;11(6):546. doi: 10.3390/life11060546.

本文引用的文献

1
Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles.
J Control Release. 2010 Feb 25;142(1):31-9. doi: 10.1016/j.jconrel.2009.09.031. Epub 2009 Oct 7.
2
Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells.
Biophys J. 2009 Jun 17;96(12):4866-76. doi: 10.1016/j.bpj.2009.02.072.
3
Spatiotemporal effects of sonoporation measured by real-time calcium imaging.
Ultrasound Med Biol. 2009 Mar;35(3):494-506. doi: 10.1016/j.ultrasmedbio.2008.09.003. Epub 2008 Nov 17.
4
Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro.
Ultrasound Med Biol. 2009 Jan;35(1):136-43. doi: 10.1016/j.ultrasmedbio.2008.07.011. Epub 2008 Oct 31.
5
Ultrasound targeted microbubble destruction for drug and gene delivery.
Expert Opin Drug Deliv. 2008 Oct;5(10):1121-38. doi: 10.1517/17425247.5.10.1121.
6
Characterization of cell membrane response to ultrasound activated microbubbles.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Jan;55(1):43-9. doi: 10.1109/TUFFC.2008.615.
7
Cell stiffening in response to external stress is correlated to actin recruitment.
Biophys J. 2008 Apr 1;94(7):2906-13. doi: 10.1529/biophysj.107.118265. Epub 2008 Jan 4.
8
Ultrasound-induced calcium oscillations and waves in Chinese hamster ovary cells in the presence of microbubbles.
Biophys J. 2007 Sep 15;93(6):L29-31. doi: 10.1529/biophysj.107.113365. Epub 2007 Jul 13.
9
Effect of ultrasound-activated microbubbles on the cell electrophysiological properties.
Ultrasound Med Biol. 2007 Jan;33(1):158-63. doi: 10.1016/j.ultrasmedbio.2006.07.029.
10
Effects of shear stress on endothelial cells: possible relevance for ultrasound applications.
Prog Biophys Mol Biol. 2007 Jan-Apr;93(1-3):374-83. doi: 10.1016/j.pbiomolbio.2006.07.017. Epub 2006 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验