Suppr超能文献

统计复杂性:将柯尔莫哥洛夫复杂性与集成方法相结合。

Statistic complexity: combining kolmogorov complexity with an ensemble approach.

机构信息

Computational Biology and Machine Learning, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.

出版信息

PLoS One. 2010 Aug 26;5(8):e12256. doi: 10.1371/journal.pone.0012256.

Abstract

BACKGROUND

The evaluation of the complexity of an observed object is an old but outstanding problem. In this paper we are tying on this problem introducing a measure called statistic complexity.

METHODOLOGY/PRINCIPAL FINDINGS: This complexity measure is different to all other measures in the following senses. First, it is a bivariate measure that compares two objects, corresponding to pattern generating processes, on the basis of the normalized compression distance with each other. Second, it provides the quantification of an error that could have been encountered by comparing samples of finite size from the underlying processes. Hence, the statistic complexity provides a statistical quantification of the statement ' is similarly complex as Y'.

CONCLUSIONS

The presented approach, ultimately, transforms the classic problem of assessing the complexity of an object into the realm of statistics. This may open a wider applicability of this complexity measure to diverse application areas.

摘要

背景

观察对象复杂性的评估是一个古老但尚未解决的问题。在本文中,我们尝试通过引入一种称为统计复杂度的度量方法来解决这个问题。

方法/主要发现:这个复杂度度量方法与其他所有度量方法不同,主要体现在以下几个方面。首先,它是一种双变量度量方法,基于归一化压缩距离来比较两个对象(对应于模式生成过程)。其次,它提供了一种可以量化的误差,这种误差可能是在比较来自基础过程的有限大小样本时产生的。因此,统计复杂度为“与 Y 具有相似的复杂度”这一说法提供了统计上的量化。

结论

本文提出的方法最终将评估对象复杂性的经典问题转化为统计学领域的问题。这可能会为这种复杂度度量方法在不同应用领域的更广泛应用开辟道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c051/2928735/3eae36eba442/pone.0012256.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验