Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior de Madrid, Universidad Autónoma de Madrid, Madrid 28049, Spain.
CES Felipe II, Universidad Complutense de Madrid, Aranjuez, Spain.
Comput Methods Programs Biomed. 2019 Jul;176:225-235. doi: 10.1016/j.cmpb.2019.03.009. Epub 2019 Mar 15.
P300 is an Event Related Potential control signal widely used in Brain Computer Interfaces. Using the oddball paradigm, a P300 speller allows a human to spell letters through P300 events produced by his/her brain. One of the most common issues in the detection of this event is that its structure may differ between different subjects and over time for a specific subject. The main purpose of this work is to deal with this inherent variability and identify the main structure of P300 using algorithmic clustering based on string compression.
In this work, we make use of the Normalized Compression Distance (NCD) to extract the main structure of the signal regardless of its inherent variability. In order to apply compression distances, we carry out a novel signal-to-ASCII process that transforms and merges different events into suitable objects to be used by a compression algorithm. Once the ASCII objects are created, we use NCD-driven clustering as a tool to analyze if our object creation method suitably represents the information contained in the signals and to explore if compression distances are a valid tool for identifying P300 structure. With the purpose of increasing the level of generalization of our study, we apply two different clustering methods: a hierarchical clustering algorithm based on the minimum quartet tree method and a multidimensional projection method.
Our experimental results show good clustering performance over different experiments, showing the structure extraction capabilities of our procedure. Two datasets with recordings in different scenarios were used to analyze the problem and validate our results, respectively. It has to be pointed out that when the clustering performance over individual electrodes is analyzed, higher P300 activity is found in similar regions to other articles using the same datasets. This suggests that our approach might be used as an electrode-selection criteria.
The proposed NCD-driven clustering methodology can be used to discover the structural characteristics of EEG and thereby, it is suitable as a complementary methodology for the P300 analysis.
P300 是一种事件相关电位控制信号,广泛应用于脑机接口。使用奇异性范式,P300 拼写器允许人类通过大脑产生的 P300 事件来拼写字母。在检测这种事件时,最常见的问题之一是其结构可能因不同的个体和特定个体的时间而有所不同。这项工作的主要目的是处理这种固有变异性,并使用基于字符串压缩的算法聚类来识别 P300 的主要结构。
在这项工作中,我们利用归一化压缩距离(NCD)来提取信号的主要结构,而不受其固有变异性的影响。为了应用压缩距离,我们进行了一种新颖的信号到 ASCII 的处理过程,该过程将不同的事件转换并合并为适合压缩算法使用的对象。一旦创建了 ASCII 对象,我们就使用 NCD 驱动的聚类作为工具来分析我们的对象创建方法是否适当地表示了信号中包含的信息,并探索压缩距离是否是识别 P300 结构的有效工具。为了提高我们研究的泛化水平,我们应用了两种不同的聚类方法:一种基于最小四分树方法的层次聚类算法和一种多维投影方法。
我们的实验结果表明,在不同的实验中,聚类性能良好,展示了我们的方法的结构提取能力。使用两个不同场景的记录数据集分别进行分析和验证。需要指出的是,当分析单个电极的聚类性能时,发现更高的 P300 活动出现在与使用相同数据集的其他文章相似的区域。这表明我们的方法可能被用作电极选择标准。
所提出的 NCD 驱动聚类方法可用于发现 EEG 的结构特征,因此适合作为 P300 分析的补充方法。