Department of Computer Science and Engineering, Sino-German Joint Software Institute, Beihang University, 100191 Beijing, China.
Adv Exp Med Biol. 2010;680:497-511. doi: 10.1007/978-1-4419-5913-3_56.
Dressing the problem of virtual screening is a long-term goal in the drug discovery field, which if properly solved, can significantly shorten new drugs' R&D cycle. The scoring functionality that evaluates the fitness of the docking result is one of the major challenges in virtual screening. In general, scoring functionality in docking requires a large amount of floating-point calculations, which usually takes several weeks or even months to be finished. This time-consuming procedure is unacceptable, especially when highly fatal and infectious virus arises such as SARS and H1N1, which forces the scoring task to be done in a limited time. This paper presents how to leverage the computational power of GPU to accelerate Dock6's (http://dock.compbio.ucsf.edu/DOCK_6/) Amber (J. Comput. Chem. 25: 1157-1174, 2004) scoring with NVIDIA CUDA (NVIDIA Corporation Technical Staff, Compute Unified Device Architecture - Programming Guide, NVIDIA Corporation, 2008) (Compute Unified Device Architecture) platform. We also discuss many factors that will greatly influence the performance after porting the Amber scoring to GPU, including thread management, data transfer, and divergence hidden. Our experiments show that the GPU-accelerated Amber scoring achieves a 6.5× speedup with respect to the original version running on AMD dual-core CPU for the same problem size. This acceleration makes the Amber scoring more competitive and efficient for large-scale virtual screening problems.
解决虚拟筛选问题是药物发现领域的一个长期目标,如果得到妥善解决,可以显著缩短新药研发周期。评估对接结果适配度的打分功能是虚拟筛选的主要挑战之一。一般来说,对接中的打分功能需要大量的浮点运算,通常需要数周甚至数月才能完成。这个耗时的过程是不可接受的,尤其是当出现 SARS 和 H1N1 等高度致命和传染性的病毒时,这迫使评分任务在有限的时间内完成。本文介绍了如何利用 GPU 的计算能力来加速 Dock6(http://dock.compbio.ucsf.edu/DOCK_6/)的 Amber(J. Comput. Chem. 25: 1157-1174, 2004)打分,使用 NVIDIA CUDA(NVIDIA Corporation Technical Staff,Compute Unified Device Architecture - Programming Guide,NVIDIA Corporation,2008)(计算统一设备架构)平台。我们还讨论了在将 Amber 评分移植到 GPU 后会极大影响性能的许多因素,包括线程管理、数据传输和隐藏分歧。我们的实验表明,对于相同大小的问题,GPU 加速的 Amber 评分相对于在 AMD 双核 CPU 上运行的原始版本实现了 6.5 倍的加速。这种加速使 Amber 评分在大规模虚拟筛选问题中更具竞争力和效率。