Suppr超能文献

迈向全自动高性能计算药物发现:一种大规模并行虚拟筛选管道,用于对接和分子力学/广义 Born 表面面积再评分,以提高富集度。

Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.

机构信息

Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab , Livermore, California 94550.

出版信息

J Chem Inf Model. 2014 Jan 27;54(1):324-37. doi: 10.1021/ci4005145. Epub 2014 Jan 3.

Abstract

In this work we announce and evaluate a high throughput virtual screening pipeline for in-silico screening of virtual compound databases using high performance computing (HPC). Notable features of this pipeline are an automated receptor preparation scheme with unsupervised binding site identification. The pipeline includes receptor/target preparation, ligand preparation, VinaLC docking calculation, and molecular mechanics/generalized Born surface area (MM/GBSA) rescoring using the GB model by Onufriev and co-workers [J. Chem. Theory Comput. 2007, 3, 156-169]. Furthermore, we leverage HPC resources to perform an unprecedented, comprehensive evaluation of MM/GBSA rescoring when applied to the DUD-E data set (Directory of Useful Decoys: Enhanced), in which we selected 38 protein targets and a total of ∼0.7 million actives and decoys. The computer wall time for virtual screening has been reduced drastically on HPC machines, which increases the feasibility of extremely large ligand database screening with more accurate methods. HPC resources allowed us to rescore 20 poses per compound and evaluate the optimal number of poses to rescore. We find that keeping 5-10 poses is a good compromise between accuracy and computational expense. Overall the results demonstrate that MM/GBSA rescoring has higher average receiver operating characteristic (ROC) area under curve (AUC) values and consistently better early recovery of actives than Vina docking alone. Specifically, the enrichment performance is target-dependent. MM/GBSA rescoring significantly out performs Vina docking for the folate enzymes, kinases, and several other enzymes. The more accurate energy function and solvation terms of the MM/GBSA method allow MM/GBSA to achieve better enrichment, but the rescoring is still limited by the docking method to generate the poses with the correct binding modes.

摘要

在这项工作中,我们宣布并评估了一种高通量虚拟筛选管道,用于使用高性能计算 (HPC) 对虚拟化合物数据库进行计算机筛选。该管道的显著特点是具有自动受体准备方案和无监督结合位点识别。该管道包括受体/靶标准备、配体准备、VinaLC 对接计算以及使用 Onufriev 及其同事的 GB 模型进行的分子力学/广义 Born 表面积 (MM/GBSA) 再评分[J. Chem. Theory Comput. 2007, 3, 156-169]。此外,我们利用 HPC 资源对 DUD-E 数据集(有用诱饵目录:增强版)进行了前所未有的综合评估,其中我们选择了 38 个蛋白质靶标和总共约 700 万个活性和诱饵。虚拟筛选的计算机计算时间在 HPC 机器上大大减少,这增加了使用更准确的方法对极大量配体数据库进行筛选的可行性。HPC 资源使我们能够为每个化合物重新评分 20 个构象,并评估重新评分的最佳构象数量。我们发现保持 5-10 个构象是在准确性和计算成本之间的良好折衷。总体结果表明,与 Vina 对接相比,MM/GBSA 再评分具有更高的平均接收者操作特征 (ROC) 曲线下面积 (AUC) 值和一致更好的早期活性恢复。具体而言,富集性能取决于靶标。对于叶酸酶、激酶和其他几种酶,MM/GBSA 再评分显著优于 Vina 对接。MM/GBSA 方法更准确的能量函数和溶剂化项允许 MM/GBSA 实现更好的富集,但再评分仍然受到对接方法的限制,以生成具有正确结合模式的构象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验