Suppr超能文献

多维系统中的元动力学收敛定律。

Metadynamics convergence law in a multidimensional system.

作者信息

Crespo Yanier, Marinelli Fabrizio, Pietrucci Fabio, Laio Alessandro

机构信息

International School for Advanced Studies (SISSA), Via Beirut 2-4, I-34014 Trieste, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 2):055701. doi: 10.1103/PhysRevE.81.055701. Epub 2010 May 7.

Abstract

Metadynamics is a powerful sampling technique that uses a nonequilibrium history-dependent process to reconstruct the free-energy surface as a function of the relevant collective variables s . In Bussi [Phys. Rev. Lett. 96, 090601 (2006)] it is proved that, in a Langevin process, metadynamics provides an unbiased estimate of the free energy F(s) . We here study the convergence properties of this approach in a multidimensional system, with a Hamiltonian depending on several variables. Specifically, we show that in a Monte Carlo metadynamics simulation of an Ising model the time average of the history-dependent potential converge to F(s) with the same law of an umbrella sampling performed in optimal conditions (i.e., with a bias exactly equal to the negative of the free energy). Remarkably, after a short transient, the error becomes approximately independent on the filling speed, showing that even in out-of-equilibrium conditions metadynamics allows recovering an accurate estimate of F(s) . These results have been obtained introducing a functional form of the history-dependent potential that avoids the onset of systematic errors near the boundaries of the free-energy landscape.

摘要

元动力学是一种强大的采样技术,它使用非平衡历史依赖过程来重构作为相关集体变量s的函数的自由能面。在布西[《物理评论快报》96, 090601 (2006)]中证明,在朗之万过程中,元动力学提供了自由能F(s)的无偏估计。我们在此研究该方法在多维系统中的收敛性质,其哈密顿量依赖于多个变量。具体而言,我们表明在伊辛模型的蒙特卡罗元动力学模拟中,历史依赖势的时间平均值以与在最优条件下进行的伞形采样相同的规律收敛到F(s)(即,偏差恰好等于自由能的负值)。值得注意的是,经过短暂的瞬态后,误差变得几乎与填充速度无关,这表明即使在非平衡条件下,元动力学也能获得F(s)的准确估计。这些结果是通过引入历史依赖势的函数形式得到的,该形式避免了在自由能景观边界附近出现系统误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验