Suppr超能文献

利用基于集合的元动力学对 DEER 数据进行置信度分析及其结构解释。

Confidence Analysis of DEER Data and Its Structural Interpretation with Ensemble-Biased Metadynamics.

机构信息

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee.

Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.

出版信息

Biophys J. 2018 Oct 2;115(7):1200-1216. doi: 10.1016/j.bpj.2018.08.008. Epub 2018 Aug 16.

Abstract

Given its ability to measure multicomponent distance distributions between electron-spin probes, double electron-electron resonance (DEER) spectroscopy has become a leading technique to assess the structural dynamics of biomolecules. However, methodologies to evaluate the statistical error of these distributions are not standard, often hampering a rigorous interpretation of the experimental results. Distance distributions are often determined from the experimental DEER data through a mathematical method known as Tikhonov regularization, but this approach makes rigorous error estimates difficult. Here, we build upon an alternative, model-based approach in which the distance probability distribution is represented as a sum of Gaussian components, and use propagation of errors to calculate an associated confidence band. Our approach considers all sources of uncertainty, including the experimental noise, the uncertainty in the fitted background signal, and the limited time span of the data collection. The resulting confidence band reveals the most and least reliable features of the probability distribution, thereby informing the structural interpretation of DEER experiments. To facilitate this interpretation, we also generalize the molecular simulation method known as ensemble-biased metadynamics (EBMetaD). This method, originally designed to generate maximal-entropy structural ensembles consistent with one or more probability distributions, now also accounts for the uncertainty in those target distributions exactly as dictated by their confidence bands. After careful benchmarks, we demonstrate the proposed techniques using DEER results from spin-labeled T4 lysozyme.

摘要

鉴于其能够测量电子自旋探针之间的多组分距离分布,双电子-电子共振(DEER)光谱学已成为评估生物分子结构动力学的主要技术。然而,评估这些分布的统计误差的方法并不标准,这常常妨碍对实验结果的严格解释。距离分布通常通过一种称为 Tikhonov 正则化的数学方法从实验 DEER 数据中确定,但这种方法很难进行严格的误差估计。在这里,我们建立在一种替代的基于模型的方法之上,其中距离概率分布表示为高斯分量的和,并使用误差传播来计算相关的置信带。我们的方法考虑了所有不确定性源,包括实验噪声、拟合背景信号的不确定性以及数据采集的有限时间跨度。由此产生的置信带揭示了概率分布中最可靠和最不可靠的特征,从而为 DEER 实验的结构解释提供信息。为了促进这种解释,我们还推广了称为集合偏向元动力学(EBMetaD)的分子模拟方法。该方法最初设计用于生成与一个或多个概率分布一致的最大熵结构集合,现在还可以根据其置信带准确地考虑这些目标分布的不确定性。经过仔细的基准测试,我们使用来自自旋标记的 T4 溶菌酶的 DEER 结果演示了所提出的技术。

相似文献

10
The global analysis of DEER data.全局分析 DEER 数据。
J Magn Reson. 2012 May;218:93-104. doi: 10.1016/j.jmr.2012.03.006. Epub 2012 Mar 24.

引用本文的文献

3
Protein Modeling with DEER Spectroscopy.利用双电子-电子共振光谱进行蛋白质建模。
Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.
4
Expanded Functionality and Portability for the Colvars Library.Colvars库的功能扩展与便携性
J Phys Chem B. 2024 Nov 14;128(45):11108-11123. doi: 10.1021/acs.jpcb.4c05604. Epub 2024 Nov 5.
9
Cucurbit[7]uril Enhances Distance Measurements of Spin-Labeled Proteins.葫芦脲增强了自旋标记蛋白的距离测量。
J Am Chem Soc. 2023 Nov 29;145(47):25726-25736. doi: 10.1021/jacs.3c09184. Epub 2023 Nov 14.

本文引用的文献

1
Optimal Tikhonov regularization for DEER spectroscopy.用于双电子-电子共振光谱学的最优蒂霍诺夫正则化
J Magn Reson. 2018 Mar;288:58-68. doi: 10.1016/j.jmr.2018.01.021. Epub 2018 Feb 1.
3
8
Full Atom Simulations of Spin Label Conformations.自旋标记构象的全原子模拟
Methods Enzymol. 2015;563:623-42. doi: 10.1016/bs.mie.2015.07.030. Epub 2015 Sep 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验