Vuong T Q P, Liu S, Van der Lee A, Cuscó R, Artús L, Michel T, Valvin P, Edgar J H, Cassabois G, Gil B
Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France.
Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA.
Nat Mater. 2018 Feb;17(2):152-158. doi: 10.1038/nmat5048. Epub 2017 Dec 11.
Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (B and B) compared to those with the natural distribution of boron (20 at% B and 80 at% B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in BN than in BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.
六方氮化硼是一种典型的层状化合物,其中较弱的非局域范德华相互作用确保了由强键合的硼和氮原子构成的二维蜂窝晶格的垂直堆叠。我们通过合成与天然硼分布(20原子%B和80原子%B)相比具有近乎纯硼同位素(B和B)的六方氮化硼晶体,来研究层状化合物的同位素工程。一方面,与标准半导体一样,声子能量和电子带隙都随硼同位素质量而变化,后者是由于零点重整化的量子效应。另一方面,针对相邻层的剪切和呼吸运动进行的温度相关实验揭示了层状材料中同位素工程的特殊性,即同位素纯化后范德华相互作用发生了改变。与BN晶体相比,BN中相邻层之间的电子密度分布更弥散。我们的结果为理解和控制层状材料中的范德华键开辟了新的前景。