Minerva Center and Department of Physics, Bar-Ilan University, Ramat Gan, Israel.
Phys Rev Lett. 2010 Jul 23;105(4):048701. doi: 10.1103/PhysRevLett.105.048701. Epub 2010 Jul 21.
We study a system composed from two interdependent networks A and B, where a fraction of the nodes in network A depends on nodes of network B and a fraction of the nodes in network B depends on nodes of network A. Because of the coupling between the networks, when nodes in one network fail they cause dependent nodes in the other network to also fail. This invokes an iterative cascade of failures in both networks. When a critical fraction of nodes fail, the iterative process results in a percolation phase transition that completely fragments both networks. We show both analytically and numerically that reducing the coupling between the networks leads to a change from a first order percolation phase transition to a second order percolation transition at a critical point. The scaling of the percolation order parameter near the critical point is characterized by the critical exponent β=1.
我们研究了由两个相互依存的网络 A 和 B 组成的系统,其中网络 A 中的一部分节点依赖于网络 B 的节点,而网络 B 中的一部分节点依赖于网络 A 的节点。由于网络之间的耦合,当一个网络中的节点失效时,它们会导致另一个网络中的依赖节点也失效。这会引发两个网络中的故障迭代级联。当达到关键节点失效的比例时,迭代过程会导致完全碎裂的两个网络的渗流相变。我们通过分析和数值方法表明,减少网络之间的耦合会导致在临界点从一级渗流相变转变为二级渗流相变。临界点附近的渗流序参量的标度由临界指数β=1 来表征。