Suppr超能文献

具有相似性的相互依存网络的渗流

Percolation of interdependent networks with intersimilarity.

作者信息

Hu Yanqing, Zhou Dong, Zhang Rui, Han Zhangang, Rozenblat Céline, Havlin Shlomo

机构信息

School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China and Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA.

Department of Systems Science, Beijing Normal University, Beijing 100875, China and Physics Department, Bar-Ilan University, Ramat Gan 52900, Israel.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052805. doi: 10.1103/PhysRevE.88.052805. Epub 2013 Nov 7.

Abstract

Real data show that interdependent networks usually involve intersimilarity. Intersimilarity means that a pair of interdependent nodes have neighbors in both networks that are also interdependent [Parshani et al. Europhys. Lett. 92, 68002 (2010)]. For example, the coupled worldwide port network and the global airport network are intersimilar since many pairs of linked nodes (neighboring cities), by direct flights and direct shipping lines, exist in both networks. Nodes in both networks in the same city are regarded as interdependent. If two neighboring nodes in one network depend on neighboring nodes in the other network, we call these links common links. The fraction of common links in the system is a measure of intersimilarity. Previous simulation results of Parshani et al. suggest that intersimilarity has considerable effects on reducing the cascading failures; however, a theoretical understanding of this effect on the cascading process is currently missing. Here we map the cascading process with intersimilarity to a percolation of networks composed of components of common links and noncommon links. This transforms the percolation of intersimilar system to a regular percolation on a series of subnetworks, which can be solved analytically. We apply our analysis to the case where the network of common links is an Erdős-Rényi (ER) network with the average degree K, and the two networks of noncommon links are also ER networks. We show for a fully coupled pair of ER networks, that for any K≥0, although the cascade is reduced with increasing K, the phase transition is still discontinuous. Our analysis can be generalized to any kind of interdependent random network systems.

摘要

实际数据表明,相互依存的网络通常存在相互相似性。相互相似性是指一对相互依存的节点在两个网络中都有相互依存的邻居节点[帕尔沙尼等人,《欧洲物理快报》92, 68002 (2010)]。例如,全球港口网络和全球机场网络相互相似,因为在这两个网络中都存在许多通过直飞航班和直达航线连接的节点对(相邻城市)。同一城市中两个网络的节点被视为相互依存。如果一个网络中的两个相邻节点依赖于另一个网络中的相邻节点,我们称这些链接为公共链接。系统中公共链接的比例是相互相似性的一种度量。帕尔沙尼等人之前的模拟结果表明,相互相似性对减少级联故障有相当大的影响;然而,目前对这种在级联过程中的影响缺乏理论理解。在这里,我们将具有相互相似性的级联过程映射到由公共链接和非公共链接组件组成的网络的渗流问题。这将相互相似系统的渗流转化为一系列子网络上的常规渗流,其可以通过解析方法求解。我们将分析应用于公共链接网络为平均度为K的厄尔多斯 - 雷尼(ER)网络,且两个非公共链接网络也为ER网络的情况。我们表明,对于一对完全耦合的ER网络,对于任何K≥0,尽管随着K的增加级联减少,但相变仍然是不连续的。我们的分析可以推广到任何类型的相互依存随机网络系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验