Department of Materials Physics, Eötvös University Budapest, H-1517 Budapest POB 32, Hungary.
Phys Rev Lett. 2010 Aug 20;105(8):085503. doi: 10.1103/PhysRevLett.105.085503. Epub 2010 Aug 19.
The existence of a well-defined yield stress, where a macroscopic crystal begins to plastically flow, has been a basic observation in materials science. In contrast with macroscopic samples, in microcrystals the strain accumulates in random bursts, which makes controlled plastic formation difficult. Here we study by 2D and 3D simulations the plastic deformation of submicron objects under increasing stress. We show that, while the stress-strain relation of individual samples exhibits jumps, its average and mean deviation still specify a well-defined critical stress. The statistical background of this phenomenon is analyzed through the velocity distribution of dislocations, revealing a universal cubic decay and the appearance of a shoulder due to dislocation avalanches.
存在一个明确的屈服应力,宏观晶体开始发生塑性流动,这在材料科学中是一个基本观察结果。与宏观样品不同,在微晶体中应变是随机突发积累的,这使得控制塑性形成变得困难。在这里,我们通过二维和三维模拟研究了在不断增加的应力下亚微米物体的塑性变形。我们表明,虽然单个样品的应力-应变关系表现出跳跃,但它的平均值和平均偏差仍然确定了一个明确的临界应力。通过位错速度分布分析了这一现象的统计背景,揭示了普遍的立方衰减和由于位错雪崩而出现的肩部。