Suppr超能文献

多能干细胞中基因组甲基化模式的动态不稳定性。

Dynamic instability of genomic methylation patterns in pluripotent stem cells.

机构信息

Department of Genetics and Development, Columbia University, New York, USA.

出版信息

Epigenetics Chromatin. 2010 Sep 24;3(1):17. doi: 10.1186/1756-8935-3-17.

Abstract

BACKGROUND

Genomic methylation patterns are established during gametogenesis, and perpetuated in somatic cells by faithful maintenance methylation. There have been previous indications that genomic methylation patterns may be less stable in embryonic stem (ES) cells than in differentiated somatic cells, but it is not known whether different mechanisms of de novo and maintenance methylation operate in pluripotent stem cells compared with differentiating somatic cells.

RESULTS

In this paper, we show that ablation of the DNA methyltransferase regulator DNMT3L (DNA methyltransferase 3-like) in mouse ES cells renders them essentially incapable of de novo methylation of newly integrated retroviral DNA. We also show that ES cells lacking DNMT3L lose DNA methylation over time in culture, suggesting that DNA methylation in ES cells is the result of dynamic loss and gain of DNA methylation. We found that wild-type female ES cells lose DNA methylation at a much faster rate than do male ES cells; this defect could not be attributed to sex-specific differences in expression of DNMT3L or of any DNA methyltransferase. We also found that human ES and induced pluripotent stem cell lines showed marked but variable loss of methylation that could not be attributed to sex chromosome constitution or time in culture.

CONCLUSIONS

These data indicate that DNA methylation in pluripotent stem cells is much more dynamic and error-prone than is maintenance methylation in differentiated cells. DNA methylation requires DNMT3L in stem cells, but DNMT3L is not expressed in differentiating somatic cells. Error-prone maintenance methylation will introduce unpredictable phenotypic variation into clonal populations of pluripotent stem cells, and this variation is likely to be much more pronounced in cultured female cells. This epigenetic variability has obvious negative implications for the clinical applications of stem cells.

摘要

背景

基因组的甲基化模式是在配子发生过程中建立的,并通过忠实的维持甲基化在体细胞中延续。先前已有迹象表明,基因组的甲基化模式在胚胎干细胞(ES 细胞)中可能不如在分化的体细胞中稳定,但尚不清楚从头甲基化和维持甲基化的不同机制在多能干细胞中与分化的体细胞中是否不同。

结果

在本文中,我们表明,在小鼠 ES 细胞中缺失 DNA 甲基转移酶调节因子 DNMT3L(DNA 甲基转移酶 3 样)会使它们基本上无法对新整合的逆转录病毒 DNA 进行从头甲基化。我们还表明,缺乏 DNMT3L 的 ES 细胞在培养过程中随着时间的推移会失去 DNA 甲基化,这表明 ES 细胞中的 DNA 甲基化是 DNA 甲基化动态丢失和获得的结果。我们发现,野生型雌性 ES 细胞的 DNA 甲基化丢失速度比雄性 ES 细胞快得多;这个缺陷不能归因于 DNMT3L 或任何 DNA 甲基转移酶的性别特异性表达差异。我们还发现,人类 ES 和诱导多能干细胞系表现出明显但可变的甲基化丢失,这不能归因于性染色体组成或培养时间。

结论

这些数据表明,多能干细胞中的 DNA 甲基化比分化细胞中的维持甲基化更具动态性和易错性。在干细胞中,DNA 甲基化需要 DNMT3L,但 DNMT3L 在分化的体细胞中不表达。易错的维持甲基化会将不可预测的表型变异引入多能干细胞的克隆群体中,而在培养的雌性细胞中这种变异可能更为明显。这种表观遗传变异性对干细胞的临床应用具有明显的负面影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6864/2954997/d62a4ba86478/1756-8935-3-17-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验