Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Spain.
Eur J Pharm Sci. 2010 Dec 23;41(5):644-9. doi: 10.1016/j.ejps.2010.09.008. Epub 2010 Sep 30.
Tissue engineering is one of the most promising research areas in bioregenerative medicine. However, the restoration of biological functionalities by implanting bioartificially engineered tissues is still highly limited because of their lack of vascular networks. The use of proangiogenic molecules delivered from a controlled release device is a promising strategy to induce tissue vascularization. Indeed, the controlled release system can enhance the therapeutic effect in vivo of many short half-life drugs, while circumventing the need for repeated administrations. In this work, PLGA:poloxamer blend based micro- and nanoparticles have been developed for the sustained delivery of a recently developed synthetic proangiogenic compound: SHA-2-22. Drug-loaded PLGA:poloxamer blend microparticles were prepared by an oil-in-oil solvent extraction/evaporation technique. Drug-loaded PLGA:poloxamer nanoparticles were prepared by a modified solvent diffusion technique. These drug carriers were characterized with regard to their physicochemical properties, morphology, drug encapsulation efficiency and release kinetics in vitro. The results show that by adjusting the formulation conditions, it is possible to obtain PLGA:poloxamer micro- and nanoparticles with very high drug loadings, and with the capacity to release the active compound in a controlled way for up to one month. In vitro cell assays performed in an endothelial cell model confirmed the bioactivity of SHA-22-2 encapsulated in PLGA:poloxamer microparticles.
组织工程是生物再生医学中最有前途的研究领域之一。然而,由于缺乏血管网络,通过植入生物人工工程组织来恢复生物功能仍然受到很大限制。使用从控制释放装置中递送的促血管生成分子是诱导组织血管生成的一种很有前途的策略。事实上,控制释放系统可以增强许多半衰期短的药物在体内的治疗效果,同时避免了重复给药的需要。在这项工作中,已经开发了基于 PLGA:聚氧乙烯醚嵌段共聚物的微球和纳米粒,用于持续递送最近开发的合成促血管生成化合物 SHA-2-22。载药 PLGA:聚氧乙烯醚嵌段共聚物微球通过油包油溶剂萃取/蒸发技术制备。载药 PLGA:聚氧乙烯醚嵌段共聚物纳米粒通过改良的溶剂扩散技术制备。这些药物载体在物理化学性质、形态、药物包封效率和体外释放动力学方面进行了表征。结果表明,通过调整制剂条件,可以获得具有非常高载药量的 PLGA:聚氧乙烯醚微球和纳米球,并具有长达一个月的控制释放活性化合物的能力。在血管内皮细胞模型中进行的体外细胞试验证实了封装在 PLGA:聚氧乙烯醚微球中的 SHA-2-22 的生物活性。