Suppr超能文献

无监督的自然视觉体验能迅速重塑下颞叶皮层中与大小无关的物体表征。

Unsupervised natural visual experience rapidly reshapes size-invariant object representation in inferior temporal cortex.

机构信息

McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Neuron. 2010 Sep 23;67(6):1062-75. doi: 10.1016/j.neuron.2010.08.029.

Abstract

We easily recognize objects and faces across a myriad of retinal images produced by each object. One hypothesis is that this tolerance (a.k.a. "invariance") is learned by relying on the fact that object identities are temporally stable. While we previously found neuronal evidence supporting this idea at the top of the nonhuman primate ventral visual stream (inferior temporal cortex, or IT), we here test if this is a general tolerance learning mechanism. First, we found that the same type of unsupervised experience that reshaped IT position tolerance also predictably reshaped IT size tolerance, and the magnitude of reshaping was quantitatively similar. Second, this tolerance reshaping can be induced under naturally occurring dynamic visual experience, even without eye movements. Third, unsupervised temporal contiguous experience can build new neuronal tolerance. These results suggest that the ventral visual stream uses a general unsupervised tolerance learning algorithm to build its invariant object representation.

摘要

我们可以轻松地从每个物体产生的无数视网膜图像中识别出物体和面孔。有一种假设认为,这种容忍度(也称为“不变性”)是通过依赖于物体身份在时间上是稳定的这一事实来学习的。虽然我们之前在非人类灵长类动物腹侧视觉流(颞下皮质,或 IT)的顶部发现了支持这一观点的神经证据,但我们在这里测试这是否是一种普遍的容忍度学习机制。首先,我们发现,同样类型的无监督经验,重塑了 IT 位置容忍度,也可预测地重塑了 IT 大小容忍度,而且重塑的幅度在数量上是相似的。其次,这种容忍度重塑可以在自然发生的动态视觉体验下诱导,甚至无需眼球运动。第三,无监督的时间连续经验可以建立新的神经元容忍度。这些结果表明,腹侧视觉流使用一种通用的无监督容忍度学习算法来构建其不变的物体表示。

相似文献

9
Invariant visual object recognition: biologically plausible approaches.不变视觉物体识别:生物学上可行的方法。
Biol Cybern. 2015 Oct;109(4-5):505-35. doi: 10.1007/s00422-015-0658-2. Epub 2015 Sep 3.

引用本文的文献

3
Parallel development of object recognition in newborn chicks and deep neural networks.新生雏鸡与深度神经网络中物体识别的并行发展
PLoS Comput Biol. 2024 Dec 2;20(12):e1012600. doi: 10.1371/journal.pcbi.1012600. eCollection 2024 Dec.
4
Adaptation of the inferior temporal neurons and efficient visual processing.颞下神经元的适应性与高效视觉处理
Front Behav Neurosci. 2024 Jul 26;18:1398874. doi: 10.3389/fnbeh.2024.1398874. eCollection 2024.
9
The Role of Visual Factors in Dyslexia.视觉因素在诵读困难症中的作用。
J Cogn. 2023 Jun 29;6(1):31. doi: 10.5334/joc.287. eCollection 2023.
10
Visualizing advances in the future of primate neuroscience research.展望灵长类神经科学研究的未来进展。
Curr Res Neurobiol. 2022 Dec 13;4:100064. doi: 10.1016/j.crneur.2022.100064. eCollection 2023.

本文引用的文献

1
Learning Invariance from Transformation Sequences.从变换序列中学习不变性。
Neural Comput. 1991 Summer;3(2):194-200. doi: 10.1162/neco.1991.3.2.194.
4
Boosting perceptual learning by fake feedback.通过虚假反馈增强知觉学习。
Vision Res. 2009 Oct;49(21):2574-85. doi: 10.1016/j.visres.2009.06.009. Epub 2009 Jun 14.
9
Phenomenological models of synaptic plasticity based on spike timing.基于脉冲时间的突触可塑性现象学模型。
Biol Cybern. 2008 Jun;98(6):459-78. doi: 10.1007/s00422-008-0233-1. Epub 2008 May 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验