McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Neuron. 2010 Sep 23;67(6):1062-75. doi: 10.1016/j.neuron.2010.08.029.
We easily recognize objects and faces across a myriad of retinal images produced by each object. One hypothesis is that this tolerance (a.k.a. "invariance") is learned by relying on the fact that object identities are temporally stable. While we previously found neuronal evidence supporting this idea at the top of the nonhuman primate ventral visual stream (inferior temporal cortex, or IT), we here test if this is a general tolerance learning mechanism. First, we found that the same type of unsupervised experience that reshaped IT position tolerance also predictably reshaped IT size tolerance, and the magnitude of reshaping was quantitatively similar. Second, this tolerance reshaping can be induced under naturally occurring dynamic visual experience, even without eye movements. Third, unsupervised temporal contiguous experience can build new neuronal tolerance. These results suggest that the ventral visual stream uses a general unsupervised tolerance learning algorithm to build its invariant object representation.
我们可以轻松地从每个物体产生的无数视网膜图像中识别出物体和面孔。有一种假设认为,这种容忍度(也称为“不变性”)是通过依赖于物体身份在时间上是稳定的这一事实来学习的。虽然我们之前在非人类灵长类动物腹侧视觉流(颞下皮质,或 IT)的顶部发现了支持这一观点的神经证据,但我们在这里测试这是否是一种普遍的容忍度学习机制。首先,我们发现,同样类型的无监督经验,重塑了 IT 位置容忍度,也可预测地重塑了 IT 大小容忍度,而且重塑的幅度在数量上是相似的。其次,这种容忍度重塑可以在自然发生的动态视觉体验下诱导,甚至无需眼球运动。第三,无监督的时间连续经验可以建立新的神经元容忍度。这些结果表明,腹侧视觉流使用一种通用的无监督容忍度学习算法来构建其不变的物体表示。