Suppr超能文献

在腹侧视觉流中,神经元对不变目标表示的学习不依赖于奖励。

Neuronal learning of invariant object representation in the ventral visual stream is not dependent on reward.

机构信息

McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

J Neurosci. 2012 May 9;32(19):6611-20. doi: 10.1523/JNEUROSCI.3786-11.2012.

Abstract

Neurons at the top of primate ventral visual stream [inferior temporal cortex (IT)] have selectivity for objects that is highly tolerant to variation in the object's appearance on the retina. Previous nonhuman primate (Macaca mulatta) studies suggest that this neuronal tolerance is at least partly supported by the natural temporal contiguity of visual experience, because altering that temporal contiguity can robustly alter adult IT position and size tolerance. According to that work, it is the statistics of the subject's visual experience, not the subject's reward, that instruct the specific images that IT treats as equivalent. But is reward necessary for gating this type of learning in the ventral stream? Here we show that this is not the case--temporal tolerance learning proceeds at the same rate, regardless of reward magnitude and regardless of the temporal co-occurrence of reward, even in a behavioral task that does not require the subject to engage the object images. This suggests that the ventral visual stream uses autonomous, fully unsupervised mechanisms to constantly leverage all visual experience to help build its invariant object representation.

摘要

灵长类动物腹侧视觉流(下颞叶皮层 (IT)] 的神经元对物体具有高度耐受的选择性,即使物体在视网膜上的外观发生变化也是如此。之前的非人类灵长类动物(猕猴)研究表明,这种神经元的耐受性至少部分是由视觉经验的自然时间连续性支持的,因为改变这种时间连续性可以强烈改变成年 IT 的位置和大小的耐受性。根据这项工作,是主体视觉经验的统计数据,而不是主体的奖励,指导着 IT 将特定的图像视为等同。但是,对于门控这种类型的学习,奖励在腹侧流中是必需的吗?在这里,我们表明事实并非如此——无论奖励的大小如何,也无论奖励是否同时出现,时间容忍性学习都以相同的速度进行,即使在不需要主体参与物体图像的行为任务中也是如此。这表明,腹侧视觉流使用自主的、完全无监督的机制来不断利用所有视觉经验来帮助构建其不变的物体表示。

相似文献

引用本文的文献

8
First-Pass Processing of Value Cues in the Ventral Visual Pathway.腹侧视觉通路上价值线索的首次加工。
Curr Biol. 2018 Feb 19;28(4):538-548.e3. doi: 10.1016/j.cub.2018.01.051. Epub 2018 Feb 8.
10
Toward an Integration of Deep Learning and Neuroscience.迈向深度学习与神经科学的整合。
Front Comput Neurosci. 2016 Sep 14;10:94. doi: 10.3389/fncom.2016.00094. eCollection 2016.

本文引用的文献

1
Learning Invariance from Transformation Sequences.从变换序列中学习不变性。
Neural Comput. 1991 Summer;3(2):194-200. doi: 10.1162/neco.1991.3.2.194.
3
7
Boosting perceptual learning by fake feedback.通过虚假反馈增强知觉学习。
Vision Res. 2009 Oct;49(21):2574-85. doi: 10.1016/j.visres.2009.06.009. Epub 2009 Jun 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验