Proteomics and Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
J Am Soc Mass Spectrom. 2010 Dec;21(12):2051-61. doi: 10.1016/j.jasms.2010.08.018. Epub 2010 Sep 24.
Fundamental studies have greatly improved our understanding of electrospray, including the underlying electrochemical reactions. Generally regarded as disadvantageous, we have recently shown that corona discharge (CD) can be used as an effective method to create a radical cation species M, thus optimizing the electrochemical reactions that occur on the surface of the stainless steel (SS) electrospray capillary tip. This technique is known as CD initiated electrochemical ionization (CD-ECI). Here, we report on the fundamental studies using CD-ECI to induce analytically useful in-source fragmentation of a range of molecules that complex transition metals. Compounds that have been selectively fragmented using CD-ECI include enolate forming phenylglycine containing peptides, glycopeptides, nucleosides, and phosphopeptides. Collision induced dissociation (CID) or other activation techniques were not necessary for CD-ECI fragmentation. A four step mechanism was proposed: (1) complexation using either Fe in the SS capillary tip material or Cu(II) as an offline complexation reagent; (2) electrochemical oxidation of the complexed metal and thus formation of a radical cation (e.g.; Fe - e(-) → Fe(+·)); (3) radical fragmentation of the complexed compound; (4) electrospray ionization of the fragmented neutrals. Fragmentation patterns resembling b- and y-type ions were observed and allowed the localization of the phosphorylation sites.
基础研究极大地提高了我们对电喷雾的理解,包括其潜在的电化学反应。通常被认为是不利的电晕放电(CD),我们最近已经证明它可以被用作一种有效的方法来产生自由基阳离子物种M,从而优化发生在不锈钢(SS)电喷雾毛细管尖端表面的电化学反应。这种技术被称为电晕放电引发的电化学电离(CD-ECI)。在这里,我们报告了使用 CD-ECI 进行的基础研究,这些研究诱导了一系列与过渡金属络合的分子的分析上有用的源内碎裂。使用 CD-ECI 选择性地碎裂的化合物包括形成烯醇盐的含苯甘氨酸肽、糖肽、核苷和磷酸肽。CD-ECI 碎裂不需要碰撞诱导解离(CID)或其他激活技术。提出了一个四步机制:(1)使用 SS 毛细管尖端材料中的 Fe 或 Cu(II)作为离线络合剂进行络合;(2)络合金属的电化学氧化,从而形成自由基阳离子(例如;Fe - e(-) → Fe(+·));(3)络合物的自由基碎裂;(4)碎裂中性物的电喷雾电离。观察到类似于 b-和 y-类型离子的碎裂模式,并允许定位磷酸化位点。