Suppr超能文献

通过瞬时相互作用评估心血管时间序列中的频域因果关系。

Assessing frequency domain causality in cardiovascular time series with instantaneous interactions.

作者信息

Faes L, Nollo G

机构信息

Dipartimento di Fisica & BioTech, Università di Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy.

出版信息

Methods Inf Med. 2010;49(5):453-7. doi: 10.3414/ME09-02-0030. Epub 2010 Sep 22.

Abstract

BACKGROUND

The partial directed coherence (PDC) is commonly used to assess in the frequency domain the existence of causal relations between two time series measured in conjunction with a set of other time series. Although the multivariate autoregressive (MVAR) model traditionally used for PDC computation accounts only for lagged effects, instantaneous effects cannot be neglected in the analysis of cardiovascular time series.

OBJECTIVES

We propose the utilization of an extended MVAR model for PDC computation, in order to improve the evaluation of frequency domain causality in the presence of zero-lag correlations among multivariate time series.

METHODS

A procedure for the identification of a MVAR model combining instantaneous and lagged effects is introduced. The coefficients of the extended model are used to estimate an extended PDC (EPDC). EPDC is compared to the traditional PDC on a simulated MVAR process and on real cardiovascular variability series.

RESULTS

Simulation results evidence that the presence of zero-lag correlations may produce misleading PDC profiles, while the correct causality patterns can be recovered using EPDC. Application on real data leads to spectral causality estimates which are better interpretable in terms of the known cardiovascular physiology using EPDC than PDC.

CONCLUSIONS

This study emphasizes the necessity of including instantaneous effects in the MVAR model used for the computation of PDC in the presence of significant zero-lag correlations in multivariate time series.

摘要

背景

偏相干性(PDC)常用于在频域中评估两个与一组其他时间序列同时测量的时间序列之间因果关系的存在情况。尽管传统上用于PDC计算的多元自回归(MVAR)模型仅考虑滞后效应,但在心血管时间序列分析中,瞬时效应不能被忽视。

目的

我们提出使用扩展的MVAR模型进行PDC计算,以改善在多元时间序列存在零滞后相关性时频域因果关系的评估。

方法

介绍了一种识别结合瞬时和滞后效应的MVAR模型的程序。扩展模型的系数用于估计扩展的PDC(EPDC)。在模拟的MVAR过程和实际心血管变异性序列上,将EPDC与传统的PDC进行比较。

结果

模拟结果表明,零滞后相关性的存在可能会产生误导性的PDC图谱,而使用EPDC可以恢复正确的因果关系模式。在实际数据上的应用导致频谱因果关系估计,使用EPDC比PDC在已知心血管生理学方面更易于解释。

结论

本研究强调,在多元时间序列存在显著零滞后相关性的情况下,在用于计算PDC的MVAR模型中纳入瞬时效应的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验