Suppr超能文献

具有瞬时效应的生理时间序列中频域因果关系的评估框架。

A framework for assessing frequency domain causality in physiological time series with instantaneous effects.

机构信息

Department of Physics and BIOtech, University of Trento, 38060 Mattarello, Trento, Italy.

出版信息

Philos Trans A Math Phys Eng Sci. 2013 Jul 15;371(1997):20110618. doi: 10.1098/rsta.2011.0618. Print 2013 Aug 28.

Abstract

We present an approach for the quantification of directional relations in multiple time series exhibiting significant zero-lag interactions. To overcome the limitations of the traditional multivariate autoregressive (MVAR) modelling of multiple series, we introduce an extended MVAR (eMVAR) framework allowing either exclusive consideration of time-lagged effects according to the classic notion of Granger causality, or consideration of combined instantaneous and lagged effects according to an extended causality definition. The spectral representation of the eMVAR model is exploited to derive novel frequency domain causality measures that generalize to the case of instantaneous effects the known directed coherence (DC) and partial DC measures. The new measures are illustrated in theoretical examples showing that they reduce to the known measures in the absence of instantaneous causality, and describe peculiar aspects of directional interaction among multiple series when instantaneous causality is non-negligible. Then, the issue of estimating eMVAR models from time-series data is faced, proposing two approaches for model identification and discussing problems related to the underlying model assumptions. Finally, applications of the framework on cardiovascular variability series and multichannel EEG recordings are presented, showing how it allows one to highlight patterns of frequency domain causality consistent with well-interpretable physiological interaction mechanisms.

摘要

我们提出了一种方法,用于量化多个表现出显著零滞后相互作用的时间序列中的方向关系。为了克服传统多变量自回归 (MVAR) 模型对多个序列建模的局限性,我们引入了扩展的 MVAR (eMVAR) 框架,允许根据格兰杰因果关系的经典概念专门考虑时滞效应,或者根据扩展的因果关系定义考虑即时和滞后效应的组合。eMVAR 模型的谱表示被用来推导出新的频域因果度量,这些度量将已知的有向相干性 (DC) 和部分 DC 度量推广到即时效应的情况。新的度量在理论示例中进行了说明,表明它们在不存在即时因果关系的情况下简化为已知度量,并在即时因果关系不可忽略时描述了多个序列之间方向相互作用的特殊方面。然后,我们面临从时间序列数据中估计 eMVAR 模型的问题,提出了两种用于模型识别的方法,并讨论了与基本模型假设相关的问题。最后,该框架在心血管变异性序列和多通道 EEG 记录上的应用,展示了它如何能够突出与可解释的生理相互作用机制一致的频域因果模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验